

O

VMS Version 5.4 New
Features Manual

Order Number: AA-LA97C-TE

June 1990

This manual describes the new features of the VMS Version 5.4 operating
system. It also describes features that were new for Versions 5.1, 5.2, and
5.3 of the VMS operating system but are not yet documented in other printed
manuals.

Revision/Update Information: This manual supersedes previous versions
of the VMS New Features Manual.

Software Version: VMS Version 5.4

digital equipment corporation
maynard, massachusetts

June 1990

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (i) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1990.

All Rights Reserved.
Printed in U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your
critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDA DEQNA MicroVAX VAX RMS
DDIF Desktop—-VMS PrintServer 40 VAXserver
DEC DIGITAL Q-bus VAXstation
DECdtm GIGI ReGIS VMS

DECnet HSC ULTRIX VT

DECUS LiveLink UNIBUS XUl
DECwindows LNO3 VAX .
DECwriter MASSBUS VAXcluster di{g]i[t[a]1]

The following are third-party trademarks:

Adobe, Display PostSctipt, and PostScript are registered trademarks of Adobe
Systems Incorporated.

ITC Avant Garde Gothic is a registered trademark of International Typeface
Corporation.

X Window System, Version 10 and its derivations (X, X10, X Version 10, X Window
System) are trademarks of the Massachusetts Institute of Technology.

X Window System, Version 11 and its derivations (X, X11, X Version 11, X Window
System) are trademarks of the Massachusetts Institute of Technology.

ZK5481

O

Production Note

This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by Digital. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format
the text, generate a table of contents and index, and paginate the entire
document. Writers can print the document on the terminal or line printer,
or they can use Digital-supported devices, such as the LN03 laser printer
and PostScript printers (PrintServer 40 or LNO3R ScriptPrinter), to
produce a typeset-quality copy containing integrated graphics.

_

n
)

Contents

PREFACE xxiii

o

PART 1: OVERVIEW OF MAJOR NEW FEATURES

CHAPTER 1 SUMMARY OF NEW VMS VERSION 5.4 SOFTWARE

FEATURES 1-1

CHAPTER 2 INTRODUCTION TO VECTOR PROCESSING 2-1

2.1 OVERVIEW OF THE VECTOR PROCESSING ENVIRONMENT 2-1

2.1.1 VAX Vector Processing Systems 2-2

21.2 Vectorized Programs 2-3

2.1.3 VMS Support for Vector Processing 2-5

2.1.3.1 Life of a Vector Consumer « 2-5

2.1.3.2 VAX Vector Instruction Emulation Facility (VVIEF) « 2-7

2.2 MANAGING THE VECTOR PROCESSING ENVIRONMENT 2-8

2.2.1 Loading the VMS Vector Processing Support Code 2-8

222 Configuring a VMS Vector Processing System 2-8

2.2.3 Managing Vector Processes 2-9

2.2.3.1 Adjusting System Resources and Process Quotas « 2-10

2232 Distributing Scalar and Vector Resources Among

Processes * 2-11

2.24 Restricting Access to the Vector Processor by Using ACLs ___ 2-11

225 Obtaining Information About a Vector Processing System ____ 2-12

2.2.5.1 DCL Lexical Functions F$GETJPI and F$GETSYI » 2-13

2252 SHOW CPU Command « 2-13

2253 SHOW PROCESS and LOGOUT/FULL Commands « 2-13

2254 Vector Processing Support Within the VMS Accounting Utility

(ACCOUNTING) - 2-14

2255 Vector Support Within the Error Log Utility (ERROR LOG) - 2-14

2256 Vector Support Within the VMS Monitor Utility (MONITOR) « 2-14

2.2.6 Loading the VAX Vector Instruction Emulation Facility (VVIEF) 2-15

2.2.7 System Messages Related to Vector Processing Activities 2-15

Contents

2.3 PROGRAMMING IN A VECTOR PROCESSING ENVIRONMENT 2-19
2.3.1 Vector Routines in the MTH$ Run-Time Library 2-21
2.3.2 Obtaining Information About a Vector Processing System _____ 2-22
2.3.3 Releasing the Vector Processor 2-23
234 Preserving and Restoring a Routine’s Vector State 2-23
235 Debugging a Vectorized Program 2-25
2.3.51 Vector Processing Support Within the VMS Debugger « 2-25
2.35.2 Vector Processing Support Within the VMS System Dump
Analyzer (SDA) « 2-25
2.353 Vector Processing Support Within the VMS Delta/XDelta
Utility » 2—26

2354 Vector Processing Support Within the VMS Patch Utility « 2-27
2.3.6 Servicing Vector Exceptions 2-27
2.3.7 Requirements of the VAX Procedure Calling and Condition Handling

Standard for Vector Processing 2-31
2.3.7.1 Vector Register Usage * 2-32
2.3.7.2 Vector and Scalar Processor Synchronization « 2-32
2.3.7.3 Memory Synchronization » 2-32
2374 Exception Synchronization « 2-32
2.3.7.5 Synchronization Summary « 2-33
2.3.7.6 Condition Handler Parameters and Invocation « 2—-33
2.3.8 VMS Accounting Utility (ACCOUNTING) Resource Packet

Format 2-34
23.9 VMS Monitor Utility (MONITOR) VECTOR Class Record 2-34

CHAPTER 3 INTRODUCTION TO DECDTM SERVICES 3-1

3.1 CHARACTERISTICS OF DISTRIBUTED TRANSACTIONS 31
3.2 TRANSACTION PROCESSING SYSTEM MODEL 3-3
3.2.1 Resource Manager 3-3
3.2.2 Transaction Manager 3-4
3.23 Log Manager 3-5
33 OVERVIEW OF TWO-PHASE COMMIT PROTOCOL 3-6
3.4 MANAGING DECDTM SERVICES USING VMS UTILITIES 3-7

vi

)

Contents

3.5 NEW TRANSACTION_ID DATA TYPE FOR PROGRAMMING
ROUTINES 3-8

PART 2: GENERAL USER FEATURES

CHAPTER 4 DCL COMMANDS AND LEXICAL FUNCTIONS 4-1
0 CHAPTER 5 EVE EDITOR 51
5.1 BOX EDITING 5-1
5.2 NEW COMMAND: CONVERT TABS 5-2
O 5.3 NEW QUALIFIERS: /WORK AND /INTERFACE 5-2
5.4 ADDITIONAL SOURCES OF NEW EVE INFORMATION 5-2
CHAPTER 6 SYSTEM MESSAGES 6-1
C
/ 6.1 VMS FACILITIES WITH NEW OR MODIFIED SYSTEM MESSAGES 6-1
6.2 SYSTEM MESSAGES AVAILABLE FROM ONLINE HELP 6-2
CHAPTER 7 DECWINDOWS USER AND DESKTOP APPLICATIONS 7-1
741 SESSION MANAGER 7-1
711 Setting Another Session Language 7-1
7.1.2 Changing Your Target Screen 7-1

vii

Contents

7.2 CDA VIEWER 7-2
7.2.1 Viewing a PostScript File 7-3
7.2.2 New Processing Options for Viewing PostScript Files 7-3
7.3 CALCULATOR 7-5
7.4 CLOCK 7-5
7.5 MAIL: DISPLAYING POSTSCRIPT FILES 7-5
PART 3: SYSTEM MANAGEMENT FEATURES
CHAPTER 8 AUTOGEN COMMAND PROCEDURE 8-1
8.1 PARAMETER NAME VALIDATION 8-1
8.2 AGENS$FEEDBACK.REPORT REPLACED BY NEW FILE 8-1
8.3 MODPARAMS.DAT INCLUDES EXTERNAL PARAMETER FILES 8-2
8.4 MIN_, MAX_, AND ADD_ VALUES ALLOWED FOR PAGE AND SWAP
FILES 8-3
8.5 NEW FEEDBACK PARAMETERS 84
8.6 LOGICAL NAMES DEFINED BY AUTOGEN 8-4
8.7 NEW TECHNIQUE FOR RUNNING AUTOGEN IN BATCH MODE 84
8.8 USING MAIL TO SEND AGEN$PARAMS.REPORT 8-7

viii

Contents

CHAPTER 9 USER ENVIRONMENT TEST PACKAGE (UETP) 9-1
9.1 RRD40 COMPACT DISC DRIVE SUPPORT 9-1
9.2 VECTOR PROCESSING SUPPORT 9-1
CHAPTER 10 SYSMAN UTILITY 10-1
10.1 RUNNING A SYSMAN COMMAND PROCEDURE 10-1
10.2 DEFINING KEYS WITH THE DEFINE COMMAND 10-1
10.3 SPAWNING A SUBPROCESS FROM WITHIN SYSMAN 10-1
10.4 USING DCL VERIFICATION 10-1
10.5 USING LOADABLE IMAGE COMMANDS 10-1
CHAPTER 11 VAXCLUSTER MANAGEMENT 11-1
11.1 Cl ARCHITECTURE EXTENSIONS 11-1
11.2 MSCP SERVER LOAD SHARING 11-1
1.3 PREFERRED PATH SUPPORT FOR DSA DISKS 11-2
CHAPTER 12 SYSTEM GENERATION UTILITY (SYSGEN) 12-1
12.1 SCSI_NOAUTO PARAMETER 12-1
12.2 LOAD_PWD_POLICY PARAMETER 12-2

ix

Contents

12.3 LOAD_SYS IMAGES PARAMETER 12-2
12.4 SUPPORTED DEVICE NAMES FOR VAXFT 3000 SYSTEMS 12-3
12.5 NEW SYSGEN COMMANDS 12-3
SHOW/BI=BIINDEX 12-4
SHOW/BUS=BUSID 12-5
SHOW/XMI=BIINDEX 12-6
CHAPTER 13 ERROR LOG UTILITY (ERROR LOG) 131
13.1 SUPPORTED DEVICE TYPES FOR VAXFT 3000 SYSTEMS 13-1
13.2 NEW KEYWORDS FOR /EXCLUDE AND /INCLUDE QUALIFIERS 13-1
13.3 NEW QUALIFIER: /NODE 13-2
CHAPTER 14 SYSTEM SECURITY 14-1
14.1 SITE-DEFINED PASSWORD POLICY 141
14.1.1 Screening New Passwords 14-1
14.1.1.1 Password History List « 14-2
14.1.1.2 Site-Specific Filter « 14-2
14.1.2 Specifying a Password Algorithm 14-3
CHAPTER 15 LOG MANAGER CONTROL PROGRAM UTILITY (LMCP) 151
15.1 MANAGING TRANSACTION LOG FILES 15—1
15.1.1 Defining SYS$JOURNAL 15-1
15.1.2 Placing a Transaction Log File 15-2
15.1.3 VAXcluster Failover 15-3
15.1.4 Determining Transaction Log File Size 15-4
15.1.5 Creating Transaction Log Files 15-4
15.1.6 Example of Creating a Transaction Log File 15-5
15.1.7 Resizing and Moving Transaction Log Files 15-7

Contents

15.2 FORMAT OF TRANSACTION LOG FILES 15-9
LMCP Usage Summary 15-12
LMCP Commands 15-13
CONVERT 15-14
CREATE 15-16
DUMP 15-18
HELP 15-22
REPAIR 15-23
ABORT 15-26
COMMIT 15-27
EXIT 15-28
FORGET 15-29
HELP 15-30
NEXT 15-32
SHOW 15-33
CHAPTER 16 MONITOR UTILITY (MONITOR) 16-1
16.1 MONITOR TRANSACTION COMMAND 16-1
16.2 TRANSACTION CLASS RECORD 16-5
16.3 MONITOR VECTOR COMMAND 16-7
16.4 VECTOR CLASS RECORD 16-9

CHAPTER 17 NETWORK CONTROL PROGRAM UTILITY (NCP)

17-1

171

LINE AND CIRCUIT NAME SUPPORT FOR VAXFT 3000
SYSTEMS

171

17.2

LINE AND CIRCUIT NAMES FOR NEW ETHERNET/820
CONTROLLERS

17-1

Xi

Contents

CHAPTER 18 VMS VOLUME SHADOWING PHASE I

PART 4: PROGRAMMING FEATURES

CHAPTER 19 VMS DEBUGGER

19-1

19.1

DEBUGGING VECTORIZED PROGRAMS

19-1

19.2 COMMAND INTERFACE: NEW AND ENHANCED COMMANDS AND
QUALIFIERS 19-1
19.3 DECWINDOWS INTERFACE: ENHANCEMENTS TO MENUS AND DIALOG
BOXES 19-2
CHAPTER 20 LINKER UTILITY (LINK) 20-1
CHAPTER 21 UTILITY ROUTINES: MAIL 21-1
CHAPTER 22 SYSTEM SERVICES 22-1
221 SUMMARY OF NEW SYSTEM SERVICES 221
222 USING TRANSACTION MANAGEMENT SYSTEM SERVICES 22-2
22.2.1 Transaction Processing System Model 22-3
22.2.2 Transaction Management 22-4
22.2.3 Starting a Transaction 22-4
22.2.4 Completing a Transaction 22-6
2225 Calling a Planned Abort 22-6
22.2.6 Example of Using Transaction Management System Services _ 22-7
22.3 USING THE INITIALIZE VOLUME ($INIT_VOL) SYSTEM SERVICE 22-9

xii

Contents

224 DESCRIPTIONS OF NEW SYSTEM SERVICES 22-10
$ABORT_TRANS 22-11
$ABORT_TRANSW 2215
$END_TRANS 22-16
$END_TRANSW 22-20
$FORMAT_AUDIT 22-21
$HASH_PASSWORD 22-25
SINIT_VOL 22-28
$RELEASE_VP 22-41
$RESTORE_VP_EXCEPTION 22-42
$RESTORE_VP_STATE 22-44
$SAVE_VP_EXCEPTION 22-46
$START_TRANS 22-48
$START_TRANSW 22-52

22,5 MODIFIED SYSTEM SERVICES 22-53

22,5.1 $CHANGE_ACL 22-53

225.1.1 Vector Processing: New Object Type ¢ 22-53

225.1.2 System Security: New ltem Codes » 22-53

22.5.2 $CHECK_ACCESS: Vector Processing and System Security

Support 22-54

2253 $ENQ: Enhanced Lock Manager Support 22-54

2254 $GETDV!I: New Device Classes 22-55

2255 $GETJPI 22-55

225.5.1 Vector Processing: New ltem Codes « 22-55

22552 System Security: New ltem Codes « 22-56

225.6 $GETSYI 22-58

22.5.6.1 Vector Processing: New Item Codes « 22-58

2256.2 System Security: New ltem Code » 22-58

22.5.7 $GETUAI: New ltem Codes for Enhanced Password Screening 22-58

2258 $MOD_IDENT: New Status Code 22-60

22.5.9 $MOUNT: Volume Shadowing Flags 22-60

22.5.10 $SETUAL: New ltem Codes for Enhanced Password Screening 22-60

22,6 IMPLEMENTING SITE-SPECIFIC SECURITY POLICIES 22-62

22.6.1 Creating Loadable Security Services 22-62

22.6.1.1 Preparing and Loading a System Service 22—63

22.6.1.2 Removing an Executive Loaded Image « 22—64

22.6.2 Installing Site-Specific Password Policy Filters 22-64

22.6.2.1 Creating a Shareable Image « 22-65

22.6.2.2 Installing a Shareable Image « 22—65

xiii

Contents

CHAPTER 23 RUN-TIME LIBRARY ROUTINES 23-1
23.1 PARALLEL PROCESSING (PPL$) 23-1
23.2 MATHEMATICS (MTHS) 23-2
CHAPTER 24 VMS RECORD MANAGEMENT SERVICES 241

24.1 VMS RMS ASYNCHRONOUS SUPPORT FOR PROCESS-PERMANENT
FILES 24-1
24.2 LOCAL BUFFER MAXIMUM INCREASED 241
24.3 ACCESS-MODE PROTECTION FOR VMS RMS 24-2
24.3.1 Access-Mode Protected Services 24-2
24.3.2 Access-Mode Protected Memory 24-3
24.4 EXPIRED-DATE SUPPRESSION 24-3
24.4.1 " The Role of XAB$_NORECORD XABITM 24-3
24.4.2 Applications for XAB$_NORECORD XABITM 24-4
CHAPTER 25 1/O DRIVER SUPPORT 25-1
25.1 PSEUDOTERMINAL DRIVER 25-1
25.2 SHADOW SET VIRTUAL UNIT DRIVER 25-1
25.3 NEW MODIFIER BITS FOR TRM$_MODIFIERS ITEM CODE 25-1
25.4 ITEMLIST READ FUNCTION 1I/O STATUS BLOCK 25-2
25.5 NEW ACP-QIO FUNCTION ATTRIBUTES 25-2

Xiv

O

Contents

CHAPTER 26 SYSTEM DUMP ANALYZER UTILITY (SDA) 26-1

26.1 NEW SHOW PROCESS QUALIFIER: /IMAGES 26-1

26.2 NEW SHOW PROCESS QUALIFIER: /VECTOR_REGISTERS 26-2

CHAPTER 27 DEVICE SUPPORT 27-1

271 VAX 9000 HARDWARE CONSIDERATIONS 271

27.2 VAX 9000 SYSTEM ADDRESS SPACE 271

27.3 DRIVER DEBUGGING WITH POOL CHECKING 27-7

CHAPTER 28 VAX TEXT PROCESSING UTILITY (VAXTPU) 28-1

28.1 NEW QUALIFIER: /INTERFACE 28-1

28.2 NEW AND ENHANCED BUILT-IN PROCEDURES 28-1

28.3 WORK FILE SUPPORT 28-2
CHAPTER 29 VAX RMS JOURNALING: SUPPORT FOR DECDTM

SERVICES 291

29.1 SUPPORT FOR DECDTM TRANSACTIONS 29-1

29.2 RUF SERVICES EMULATED 29-1

29.3 NETWORK SUPPORT 29-2

XV

Contents

29.4 RECORD STREAM ASSOCIATION 29-3
29.4.1 How Streams Become Associated with a Transaction 29-3
29.4.2 Stream Association Using RUF and DECdtm Services 29-3
29.5 DETACHED RECOVERY 29-4
29.5.1 Synchronous and Asynchronous Recovery 29-4
29.5.2 Partial Recovery 29-4
29.6 PLACEMENT OF RECOVERY UNIT JOURNALS 29-5
29.7 MULTIPLE LONG-TERM JOURNALS ALLOWED 29-6
29.8 MIXED-VERSION CLUSTERS 29-6
CHAPTER 30 VMSINSTAL 30-1
30.1 NEW PARAMETER FOR THE VMSINSTAL SPKITBLD.COM
PROCEDURE 30-1
30.2 NEW AND ENHANCED VMSINSTAL CALLBACKS 30-1
CHAPTER 31 DECWINDOWS AND CDA PROGRAMMING FEATURES 31-1
31.1 NEW PROGRAMMING EXAMPLES IN DECWS$EXAMPLES
DIRECTORY 31-1
31.1.1 BTrap (Broadcast Message Trapper) 31-1
31.1.2 TestVHist (Histogram Widget Exerciser) 31-2
31.1.3 TestVList (VList Widget Exerciser) 31-2
31.14 VDragExample (VDrag Exerciser) 31-3
31.2 XUl TOOLKIT: ENHANCEMENTS TO COLOR MIXING WIDGET 31-3
31.3 VMS DECWINDOWS DISPLAY POSTSCRIPT SYSTEM 314

XVi

Contents

31.4 COMPOUND DOCUMENT ARCHITECTURE (CDA) 31-5
31.4.1 PostScript Support for CDA VIEW Command 31-5
31.4.2 CDA Viewer Support of Adobe Font Metrics and DECmath

Fonts 31-6
3143 New CDA Documentation 31-6

APPENDIX A VMS VERSION 5.3 FEATURES A

A1 VMS VERSION 5.3 SYSTEM MANAGEMENT FEATURES A-1
A.1.1 Extension of Lock Manager Limit A-1
A1.2 NCP Executor Command Changes A-1
A13 Parameter for SET/DEFINE EXECUTOR A-1
A14 SHOW EXECUTOR CHARACTERISTICS Command A-2
A2 VMS VERSION 5.3 SUPPORT FOR THE VMS DISTRIBUTED NAME

SERVICE A-3
A.21 Introduction to the Distributed Name Service A-3
A.2.2 The DNS Namespace A-4
A2.2.1 Planning Namespace Objects + A—4
A2.2.2 Restrictions « A4
A223 Using the Namespace *+ A-5
A22.4 Object Names + A-5
A2.25 Object Attributes « A-5
A23 Structure of a Namespace A-6
A.2.3.1 Naming Syntax « A-7
A23.2 Logical Names - A-8
A.2.3.3 Valid Characters for DNS Names « A-8
A.2.4 Creating Objects A-10
A25 Modifying Objects A-12
A.2.6 Distributing the Namespace A-15
A.2.6.1 Replicating Directories + A—15
A26.2 Types of Directories « A-16
A26.3 Setting Confidence + A-16
A2.6.4 Maintaining Consistency in Data « A-17
A2.7 Requesting Information from DNS A-17
A2.71 Reading Objects + A-18
A2.7.2 Listing Information + A-21
A273 How the Clerk Locates Data + A-24
A28 DNS System Services A-25

$DNS A-26
$DNSW A-50

A.2.9 DNS Run-Time Routines A-51

xvii

Contents

DNS$APPEND_SIMPLENAME_TO_RIGHT
DNS$COMPARE_FULLNAME
DNS$COMPARE_SIMPLENAME
DNS$CONCATENATE_NAME
DNS$COUNT_SIMPLENAMES
DNS$CVT_DNSADDRESS_TO_BINARY
DNS$CVT_DNSADDRESS_TO_NODENAME
DNS$CVT_NODENAME_TO_DNSADDRESS
DNS$CVT_TO_USERNAME_STRING
DNS$PARSE_USERNAME_STRING
DNS$REMOVE_FIRST SET VALUE
DNS$REMOVE_LEFT_SIMPLENAME
DNS$REMOVE_RIGHT SIMPLENAME

A-52
A-54
A-55
A-56
A-58
A-59
A-61
A-63
A-65
A-67
A-70
A-73
A-75

A.2.10 Starting the DNS Clerk A-77

A.2.11 DECnet Event Messages A-77
APPENDIX B VMS VERSION 5.2 FEATURES B-1

B.1 VMS VERSION 5.2 SYSTEM MANAGEMENT FEATURES B-1

B.1.1 System Generation Utility (SYSGEN) B-1

B.1.1.1 DEINSTALL Command Description *+ B-1

B.1.1.2 ERLBUFFERPAGES Parameter « B-2

B.1.2 NETCONFIG.COM Security Enhancements B-2

B.1.2.1 Default Access Options « B2

B.1.2.2 Security Benefits «+ B—4

B.1.2.3 Questions Posed by NETCONFIG.COM « B-4

B.1.3 New NETCONFIG_UPDATE.COM for Existing Networks B-4

B.1.3.1 Benefits of NETCONFIG_UPDATE.COM » B-5

B.1.3.2 Using NETCONFIG_UPDATE.COM in a VAXcluster « B-5

B.1.4 Backup Utility (BACKUP) B-5

B.1.4.1 Performance Enhancements « B-5

B.1.4.2 Setting Up the BACKUP Account « B—6

B.1.4.3 Setting System Generation Utility (SYSGEN) Parameters « B—7

B.1.4.4 Understanding Why the Output Device Seems Idle -+ B-8

B.1.45 /BUFFER_COUNT Command Qualifier Is Now Obsolete + B-8

B.1.4.6 Cyclic Redundancy Checking Emulation Improvements « B-8

B.1.4.7 Pressing Ctrl/T to Obtain Information About BACKUP

XViii

Operations « B-8

(D

C

Contents

B.2

B.2.1
B.2.2
B.2.3
B.2.4
B.2.5
B.2.6
B.2.7

B.2.8

B.2.9

B.2.10
B.2.11
B.2.12
B.2.13
B.2.14
B.2.15

B.2.16
B.2.17

B.2.18

B.2.19

B.2.20

B.2.21
B.2.22
B.2.23
B.2.24

B.2.25
B.2.26
B.2.27

B.2.28
B.2.29
B.2.30

VMS VERSION 5.2 SYSTEM SERVICES FEATURES
Modifications to $SETUAI and $GETUAI
New Item Codes for $SETUAI and $GETUAI
New Authorization Flags for $SETUAI and $GETUAI
Modifications to SMOUNT
Modifications to $DISMOUNT
Modification to $SMOD_IDENT

Modifications to Existing System Services for Clusterwide Process
Accessibility

Process Information Services
Overview of $GETJPI and $GETJPI with SPROCESS_SCAN ___
Using the Process ID to Obtain Information
Using the Process Name to Obtain Information
Modifications to $GETJPI
Using $GETJPI Alone
Requesting Information About a Single Process

Requesting Information About All Processes on the Local
System

Using $GETJPI with $PROCESS ‘SCAN
Using the SPROCESS_SCAN ltem List and ltem-Specific Flags

Requesting Information About Processes That Match One
Criterion

B-9
B-10
B-11
B-12
B-12
B-13
B-14

B-14
B-15
B-15
B-16
B-17
B-18
B-18
B-19

B-20
B-22
B-22

B-24

Requesting Information About Processes That Match Multiple Values for

One Criterion
Requesting Information About Processes That Match Multiple
Criteria
Specifying a Node as Selection Criterion
Scanning All Nodes on the Cluster for Processes

Scanning Specific Nodes on the Cluster for Processes

Conducting Multiple Simultaneous Searches with
$PROCESS_SCAN

Programming Considerations for GETJPI$
Using Item Lists Correctly
Improving Performance by Using Buffered $GETJPI
Operations
Meeting Remote $GETJPI Quota Requirements
Using $GETJPI Control Flags
Descriptions of New VMS Version 5.2 System Services

$DEVICE_SCAN B-39

$PROCESS_SCAN B-42

B-26

B-27
B-28
B-29
B-29

B-30
B-31
B-31

B-31
B-33
B-33
B-38

Xix

Contents

APPENDIX C VMS VERSION 5.1 FEATURES C-1
C.A1 VMS VERSION 5.1 SUPPORT FOR COMPOUND DOCUMENTS C-1
C.1.1 VMS Commands and Utilities Cc-2
C.1.1.1 Displaying RMS File Tags + C-2

C.1.1.11 DIRECTORY/FULL » C-2
C.1.1.1.2 ANALYZE/RMS_FILE « C-3
C11.2 Creating RMS File Tags + C-3
C.1.1.3 Preserving RMS File Tags and DDIF Semantics + C-4
C.1.1.3.1 COPY Command « C—4
C.1.1.3.2 VMS Mail Utility « C-5
C1.1.4 APPEND Command « C-5
C.1.2 DDIF Support in a Heterogeneous Environment C-6
Cc.1.21 EXCHANGE/NETWORK Command « C-6
c1.22 COPY Command « C-6
C.1.23 VMS Mail Utility « C-7
C1.24 DDIF File Access Within a Mixed Version Cluster « C-7
C.1.3 VMS RMS Interface Changes Cc-7
C.1.3.1 Programming Interface for File Tagging + C-8
$XABITM Cc-9
C.1.3.2 Accessing a Tagged File + C-11
C.1.3.2.1 File Accesses That Do Not Sense Tags + C—12
C.1.3.2.2 File Accesses That Sense Tags *+ C—12
C.1.3.3 Preserving Tags « C-14
Ci14 Distributed File System Support for DDIF Tagged Files C-15
C1.5 VMS RMS Errors c-15
C.2 EXCHANGE/NETWORK COMMAND C-16

INDEX

EXAMPLES
8-1 Sample AUTOGEN Command Procedure 8-5
15-1 Sample Transaction Log File 15-10
221 Using Transaction Management Services 22-7
B—1 Using $GETJPI to Obtain Information About the Calling

Process B-19
B-2 Using $GETJPI and the Process Name to Obtain Information

About a Process B-20
B-3 Using $GETJPI to Request Information About All Processes

on the Local System B-21

XX

o

Contents

B-4 Using $GETJPI and $PROCESS_SCAN to Select Process

Information by User Name B-24
B-5 Using $GETJPI and $PROCESS_SCAN with Multiple Values

for One Criterion B-27
B-6 Selecting Processes That Match Multiple Criteria B-28
B-7 Searching the Cluster for Process Information B-29
B-8 Searching for Process Information on Specific Nodes in the

Cluster B-30
B-9 Using a $GETJPI Buffer to Improve Performance B-32
B-10 Using $GETJPI Control Flags to Avoid Swapping a Process

into the Balance Set B-35
C-1 Tagging a File Cc-10
Cc-2 Accessing a Tagged File C-13

FIGURES

2-1 VAX 6000-400 Series Vector-Present Processor

Configuration 2-3
2-2 VAX 9000 Series Vector-Present Processor Configuration ___ 2-4
2-3 Life of a Vector Consumer 2-6
3-1 Sample Debit/Credit Transaction Execution 3-3
3-2 Participants in a Distributed Transaction Example 3-5
7-1 DECwindows Screen Number Dialog Box 7-2
7-2 DECwindows Screen Number Dialog Box 7-2
121 SCSI_NOAUTO System Parameter 12-1
15-1 Sample Transaction Log File Configuration on Two-Node

VAXcluster 15-6
16-1 TRANSACTION Class Record Format 16-5
16-2 VECTOR Class Record Format 16-9
22-1 Transaction Processing Components 22-3
27-1 VAX 9000 System Architecture 27-2
27-2 VAX 9000 XMI Address Space 27-3
27-3 SCU/XMI Systems I/O Address Space 27-4
27-4 SCU Bus Address Allocation 27-5
27-5 XJA Private Space Address Aliocation 27-6
27-6 SCU/XMI Systems Address Bit Structure 27-7
A-1 A DNS Namespace A-6
A-2 Valid Character Codes for DNS Simple Names A-9
A-3 Additional Character Codes Allowed in Quoted Simple

Names A-9
A-4 A Partitioned Namespace A-15

XXi

Contents

A-5 A Namespace with Replicated Directories A-16
TABLES
1-1 Summary of VMS Version 5.4 Software Features 1-1
2-1 Settings of VECTOR_PROC System Parameter 2-8
2-2 System Messages Relating to Vector Processing 2-16
2-3 Summary of Exception Conditions 2-29
4-1 Summary of New and Enhanced DCL Commands 4-1
4-2 Summary of New and Enhanced Lexical Functions 4-3
5-1 EVE Box Editing Commands 5-1
14-1 Arguments to the /ALGORITHM Qualifier 14-4
16-1 Descriptions of TRANSACTION Class Record Fields 166
16-2 Descriptions of VECTOR Class Record Fields 16-10
16-3 Descriptions of Additions to System Record Fields 16-10
211 Mail Utility Routines 211
221 New VMS Version 5.4 System Services 221
22-2 $ABORT_TRANS Operation Flag 2212
22-3 $END_TRANS Operation Flag 2217
224 $START_TRANS Operation Flags 22-49
22-5 Legal QUECVT Conversions 22-55
22-6 Values Returned by the DEVCLASS ltem 22-55
22-7 Attributes of an Identifier 22-56
31-1 Display PostScript Documentation 31-5
A-1 DNS Item Code Arguments A-43
B-1 UAF Process Quotas for the BACKUP Account B-6
B-2 Suggested Values for UAF Process Quotas B-7
B-3 Process ldentification B-17
C-1 Tag Support ltem Codes Cc-8

xxii

@

C

P

C

Preface

Intended Audience

This book is intended for general users, system managers, and
programmers who use the VMS operating system.

Structure of This Document

This manual is organized as follows:

Note:

Part 1, Overview of Major New Features, contains a complete
summary of the new VMS Version 5.4 software features. Part 1 also
includes separate chapters describing the following major, systemwide
enhancements to the VMS operating system:

¢ Vector processing support

e DECdtm services

It is important that you read Part 1 first for a complete
overview of the VMS Version 5.4 new features and for a
complete description of VMS support for vector processing
and DECdtm services. In addition to providing essential
information, Part 1 (particularly the vector processing and
DECdtm chapters) also directs you to relevant material located
elsewhere within this manual and others.

Part 2, General User Features, describes new features primarily of
interest to general users of the VMS operating system. The chapters
within provide information about the following:

— DCL commands and lexical functions

— EVE editor

System messages
— DECwindows user and desktop applications

Part 3, System Management Features, describes new features
primarily of interest to system managers. The chapters within provide
information about the following components of the VMS operating
system:

— AUTOGEN

- UETP

— SYSMAN Utility

— VAXcluster management

— System Generation Utility (SYSGEN)
— Error Log Utility (ERROR LOG)

— System security

xXxiii

Preface

— Log Manager Control Program Utility (LMCP)
— Monitor Utility (MONITOR)

—~ Network Control Program Utility (NCP)

- VMS Volume Shadowing Phase II

¢ Part 4, Programming Features, describes new features primarily of
interest to programmers. The chapters within provide information
about the following components of the VMS operating system:

— VMS Debugger

— Linker Utility (LINK)

~ Mail Utility routines

— System Services

— Run-Time Library Routines

— Record Management Services (RMS)

— I/O Driver support

— System Dump Analyzer (SDA)

— Device Support

— VAX Text Processing Utility (VAXTPU)

— VAX RMS Journaling

— VMSINSTAL

— Compound Document Architecture (CDA) support
— VMS DECwindows Display PostScript system
— XUI Toolkit

The VMS Version 5.4 New Features Manual also has three appendixes
documenting features that were new to Versions 5.3, 5.2, and 5.1 of
the VMS operating system but are not yet documented in other printed
manuals.

Associated Documents

XXiv

Refer to the following documents for more detailed information about
the VMS Version 5.4 software features described in this manual. For
more information about these documents, see the Overview of VMS
Documentation or contact your Digital representative.

o VMS Version 5.4 Release Notes
s VMS DCL Dictionary
¢ VMS EVE Reference Manual

* VMS System Messages and Recovery Procedures Reference Manual:
Part 1

YN
NS

o

C

o

Preface

e VMS System Messages and Recovery Procedures Reference Manual:
Part IT

s VMS SYSMAN Utility Manual

*» VMS Volume Shadowing Manual

* VMS VAXcluster Manual

e VMS Debugger Manual

o Introduction to VMS System Routines

s VMS Utility Routines Manual

o VMS RTL Mathematics (MTHS$) Manual

* VMS RTL Parallel Processing (PPL$) Manual

* VAX MACRO and Instruction Set Reference Manual

o VAX RMS Journaling Manual

* VMS Developer’s Guide to VMSINSTAL

o VMS I/0 User’s Reference Manual: Part I

* VAX Text Processing Utility Manual

* VMS Device Support Manual

® CDA Reference Manual

¢ Introduction to the CDA Services

® Guide to Creating Compound Documents with the CDA Toolkit
o VMS DECwindows Toolkit Routines Reference Manual

o VMS DECwindows Display PostScript System Programming
Supplement

The following manuals are published by Adobe Systems Incorporated but
are available through Digital. See Section 31.3 of this manual for more
information.

* Display PostScript System Perspective for Software Developers

¢ Display PostScript System pswrap Reference Manual

® PostScript Language Extensions for the Display PostScript System
* PostScript Language Color Extensions

* Display PostScript System Client Library Reference Manual

* PostScript Document Structuring Conventions Specification

XXv

Preface

Conventions

The following conventions are used in this manual:

mouse

MB1, MB2, MB3

PB1, PB2, PB3, PB4

SB1, SB2
Ctrl/x

PF1 x

{}

XXVi

The term mouse is used to refer to any pointing
device, such as a mouse, a puck, or a stylus.

MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button. (The buttons can be redefined by the
user.)

PB1, PB2, PB3, and PB4 indicate buttons on the
puck.

SB1 and SB2 indicate buttons on the stylus.

A sequence such as Ctrl/x indicates that you must
hold down the key labeled Ctrl while you press
another key or a pointing device button.

A sequence such as PF1 x indicates that you must
first press and release the key labeled PF1, then
press and release another key or a pointing device
button.

In examples, a key name is shown enclosed in a box
to indicate that you press a key on the keyboard. (in
text, a key name is not enclosed in a box.)

In examples, a horizontal ellipsis indicates one of the
following possibilities:

+ Additional optional arguments in a statement
have been omitted.

« The preceding item or items can be repeated one
or more times.

« Additional parameters, values, or other
information can be entered.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being discussed.

In format descriptions, parentheses indicate that, if
you choose more than one option, you must enclose
the choices in parentheses.

In format descriptions, brackets indicate that whatever
is enclosed within the brackets is optional; you can
select none, one, or all of the choices. (Brackets are
not, however, optional in the syntax of a directory
name in a file specification or in the syntax of a
substring specification in an assignment statement.)

In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

O

m—

red ink
boldface text

italic text

‘ /J UPPERCASE TEXT

numbers

Preface

Red ink indicates information that you must enter from
the keyboard or a screen object that you must choose
or click on.

For online versions of the book, user input is shown in
boid.

Boldface text represents the introduction of a new
term or the name of an argument, an attribute, or a
reason.

Boldface text is also used to show user input in online
versions of the book.

ltalic text represents information that can vary
in system messages (for example, Internal error
number).

Uppercase letters indicate that you must enter a
command (for example, enter OPEN/READ), or they
indicate the name of a routine, the name of a file, the
name of a file protection code, or the abbreviation for
a system privilege.

Hyphens in coding examples indicate that additional
arguments to the request are provided on the line that
follows.

Unless otherwise noted, all numbers in the text are
assumed to be decimal. Nondecimal radixes-—binary,
octal, or hexadecimal—are explicitly indicated.

XXVii

Part 1: Overview of Major New Features

This part contains the following chapters:

» Chapter 1, Summary of New VMS Version 5.4 Software Features

» Chapter 2, introduction to Vector Processing

+ Chapter 3, Introduction to DECdtm Services

In addition to providing essential information about VMS Version 5.4 software

features, the chapters in Part 1 also direct you to relevant material located
elsewhere within this manual and others.

Summary of New VMS Version 5.4 Software Features

This chapter provides a summary (in Table 1-1) of the new VMS Version
5.4 software features described throughout this manual and in the other

new and revised manuals associated with this release (see the Preface for
a complete list).

For information about new and enhanced hardware, see the VMS Version
5.4 Release Notes.

Table 1-1 Summary of VMS Version 5.4 Software Features

VMS Version 5.4 Systemwide Features

Vector processing Systemwide support for vector processing on VAX 9000 series and VAX
6000-400 series computers includes the VAX Vector Instruction Emulation
Facility (VVIEF), specific DCL commands and lexical functions, and the
Accounting, Error Log, Monitor, SDA, Debugger, Patch, and RTL MTH$
facilities. See Chapter 2 for a complete description of vector processing
support.

DECdtm services Systemwide support for DECdtm services includes the new Log Manager
Control Program Utility (LMCP), new MONITOR TRANSACTION
command, new and modified system services, new TRANSACTION_ID
data type, and enhanced VAX RMS Journaling support. See Chapter 3
for a complete description of DECdtm services.

VMS Version 5.4 General User Features

DCL commands New and enhanced DCL commands let you control date compaction
on the TASOE tape drive, convert procedures written in PostScript to
callable routines, compile fonts for the DECwindows server, use new
keywords and qualifiers with SET ACL and SHOW ACL, use expanded
SET HOST/DTE functions and subcommands, use symbol scoping, set
characteristics for the VT400 family of terminals, and control and monitor
specific processors and VAXft 3000 systems.

DCL lexical functions New and enhanced functions return information about cluster
identification numbers, device names, account status, verb scoping
state, volume shadowing status, vector processing, active and recognized
CPUs in an SMP system, and symbol creation (by other lexical functions).

EVE text editor Enhancements include box editing, replacement of tab characters with
spaces, and new qualifiers that let you edit large files and specify either
the character-cell or DECwindows interface.

System Messages New or modified messages are now available within specific VMS
facilities and online Help.

(continued on next page)

Summary of New VMS Version 5.4 Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.4 Software Features

VMS Version 5.4 General User Features

DECwindows User You can now set another session language or change the target
screen on the Session Manager, view PostScript files with the CDA
Viewer, change to hexadecimal or octal mode in Calculator, use new
File, Customize, and Help menus for interacting with Clock, and use
DECwindows Mail to display PostScript files.

VMS Version 5.4 System Management Features

AUTOGEN This command procedure now includes support for parameter name
validation, SYS$SYSTEM:AGEN$PARAMS.REPORT (a new file that
replaces AGENSFEEDBACK.REPORT), reading external parameter
files, controlling the size of page and swap files, new feedback
parameters, new defined process logical names, a new technique for
running AUTOGEN in batch mode, and the ability to use MAIL to send
AGEN$PARAMS.REPORT.

UETP Enhancements to the User Environment Test Package include loading
and testing of all installed and enabled vector processors, testing of the
VAX Vector Instruction Emulation Facility (VVIEF), and support for the
RRD40 compact disc drive, including SCSI disk configurations.

SYSMAN Utility Enhancements let you run a SYSMAN command procedure, define keys,
spawn a subprocess, use DCL verification, and use loadable image
commands.

VAXcluster software Enhancements include Cl architecture extensions that allow multiple ClI

interfaces per CPU and multiple star couplers per VAXcluster system;
MSCP server load sharing; and preferred path support for DSA disks
(including RA series disks and disks accessed through the MSCP
server).

SYSGEN Utility Enhancements include a new parameter for MicrovVAX and VAXstation
configurations that include third-party Small Computer System Interface
(SCSI) devices, new parameters that support site-specific password
policies, and new SHOW commands that display information such as bus
identification statistics, device addresses mapped in the I/O space for the
VAXBI bus, and device addresses mapped in the 1/O space for the XMI
bus.

Error Log Utility Enhancements include support for VAXft 3000 device types, new device-
class and entry-type keywords (to support vector processing and VAX
9000 systems) used with the /EXCLUDE and /INCLUDE qualifiers, and
support for the new /NODE qualifier, which lets you produce a report of
error log entries for specific nodes in a VAXcluster.

System Security System security enhancements enable you to implement a site-defined
password policy by screening new passwords and specifying password
algorithms. This support includes enhancements to DCL commands,
the SYSGEN Utility, the SYSMAN Utility, and system services. See
Chapter 14 for more information.

(continued on next page)

D

-
X

O

Summary of New VMS Version 5.4 Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.4 Software Features

VMS Version 5.4 System Management Features

LMCP Utility The new Log Manager Control Program Utility (LMCP) lets the system
manager create and manage transaction log files in a DECdtm services
environment. See Chapter 15 for a complete description of this new
utility.

Monitor Utility Enhancements include support for vector processing with the new
MONITOR VECTOR command and VECTOR ciass, and support for
DECdtm services with the new MONITOR TRANSACTION command and
TRANSACTION class.

NCP Utility The Network Control Program Utility now includes support for a new line
and circuit name specific to the VAXft 3000 system.
VMS Volume Shadowing VMS Volume Shadowing phase Il includes support for distributed,

clusterwide shadowing of all MSCP-compliant DSA disks (with the same
number of logical blocks) and shadowing of all DSA devices.

VMS Version 5.4 Programming Features

VMS Debugger Enhancements to the debugger’s command and DECwindows interfaces
let you debug programs containing VAX vector instructions.

Linker Utility A new command line qualifier, /BPAGE, lets you specify larger page
sizes.

Mail Utility routines New callable mail routines let you create applications that can perform

a variety of Mail Utility functions and communicate with users on remote
nodes connected to the system with DECnet-VAX.

System Services New and enhanced system services support DECdtm services, system
security enhancements, vector processing, volume shadowing, volume
initialization, and the procedure for creating site-specific loadable images.

Run-Time Library New parallel processing (PPL$) routines let you inform the PPL$ facility
when a new caller is forming or joining a parallel application, implement
work queues, delete a PPL$ application or object, set and adjust a
semaphore maximum, disable event notification, or read a spin lock state.

New and enhanced mathematics routines (MTH$) let you manipulate and
perform operations on vectors.

RMS Enhancements provide asynchronous support for process-permanent
files, an increase in the local buffer maximum, access-mode protection
for RMS services and for specific data structures and their associated 1/O
buffers, and the ability for all applications to selectively suppress updates
to the Expiration Date and Time, using XAB$_NORECORD XABITM.

I/O Drivers Enhancements include support for the Pseudoterminal driver (FTDRIVER)
' and Shadow Set Virtual Driver (SHDRIVER), modifications to the itemlist
read function of the |/O status block (IOSB) and to the itemlist terminal
driver read verify operations for the TRIM$_MODIFIERS item code, and
the addition of three new ACP-QIO functions.

(continued on next page)

Summary of New VMS Version 5.4 Software Features

Table 1-1 (Cont.) Summary of VMS Version 5.4 Software Features

VMS Version 5.4 Programming Features

System Dump Analyzer New qualifiers to the SHOW PROCESS command let you display
statistics about an image (/IMAGE) or about the values of the registers
from the process’s vector context area (/VECTOR_REGISTERS).

Device Support Enhanced support includes VAX 9000 and VAX 6000 series systems.
Programmers can write and debug driver software for non-Digital-supplied
devices attached to a VAX 9000 system.

VAXTPU Enhancements include work file support, a qualifier you can use to
specify either character-cell or DECwindows interface, and new built-in
procedures, including GET_INFO, that support journal recovery, pop-up
menus, column context values for a buffer, markers within a buffer, and
scrolling.

RMS Journaling Enhancements support DECdtm services as well as existing applications
and affect the Recovery Unit Facility (RUF), network support of remote
files, RMS record streams, the RMS Detached Recovery server,
placement of recovery unit journals, and access of files in a mixed-version
cluster.

VMSINSTAL A new data-file parameter (P4) in the Software Product Kit Building
Procedure (SPKITBLD.COM) lets you specify the name of a data file.
New callbacks affect messages displayed—and booting procedures
required—during product installations, and how you obtain a system-
generated or installer-specified password.

DECwindows Programming Enhancements include new programming examples in the
DECWS$EXAMPLES directory, new support for the XUI Toolkit color
mixing widget (both the Hue Lightness Saturation and Red, Green, Blue
color models), support for the Display PostScript system (which provides
text and image display capability for bitmapped workstations), and CDA
Viewer support for PostScript files, Adobe Font metrics, and DECmath
fonts.

1-4

O

C

C

C

Introduction to Vector Processing

The VMS Version 5.4 operating system supports vector processing on

VAX 9000 series and VAX 6000-400 series computers. This chapter
describes how vector processing works, how to manage resources, and how
to write programs within a vector processing environment. The following
sources in this manual and in other documents also describe aspects of
VMS Version 5.4 vector processing support:

* Chapter 9 (of this manual) and the VMS Version 5.4 Upgrade and
Installation Manual describe modifications to UETP.

* Chapter 4 (of this manual) and the VMS DCL Dictionary describe new
and modified DCL commands, qualifiers, and lexical functions.

* Chapter 19 (of this manual) and the VMS Debugger Manual describe
how to debug vectorized programs.

* Chapter 22 describes new and modified system services.

e The VMS RTL Mathematics (MTHS$) Manual describes new and
modified RTL mathematics routines.

Overview of the Vector Processing Environment

A single data item having one value is known as a scalar. A group of
related scalar values, or elements, all of the same data type is known as a
vector.

Traditional scalar computers operate only on scalar values and must
process vector elements sequentially. Vector computers, on the other hand,
recognize vectors as native data structures and can operate on an entire
vector with a single vector instruction.

A vector processor can routinely process a vector four to five times faster
than a traditional computer using only scalar instructions can. Vector
processors gain this speed advantage over scalar processors by their
use of special hardware techniques designed for the fast processing of
streams of data. These techniques include data pipelining, chaining,
and other forms of hardware parallelism in memory and in arithmetic
and logical functional units. Pipelined functional units allow the vector
processor to overlap the execution of successive computations with
previous computations. Chaining allows the results of one instruction
to be forwarded to another before the first instruction has been completely
processed.

2-1

2.1.1

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

VAX Vector Processing Systems

2-2

An extension to the VAX architecture defines an optional design for
integrated vector processing that has been adopted by several VAX
processing systems. The VAX vector architecture includes 16 64-bit vector
registers (VO through V15), each containing 64 elements; vector control
registers, including the vector count register (VCR), vector length register
(VLR), and vector mask register (VMR); vector functional units; and a set
of vector instructions. VAX vector instructions transfer data between the
vector registers and memory, perform integer and floating-point arithmetic,
and execute processor control functions. A more detailed description of the
VAX vector architecture, vector registers, and vector instructions appears
in the VAX MACRO and Instruction Set Reference Manual.

Those VAX systems that comply with the VAX vector architecture are
known as vector-capable systems.

A VAX vector processing system configuration includes one or more
integrated scalar-vector processor pairs, or vector-present processors.
Such a configuration can either be symmetric, including a vector
coprocessor for each scalar, or asymmetric, incorporating additional scalar-
only processors. Depending on the model of the VAX vector processing
system, the scalar and vector CPUs of vector-present processors can

be either a single, integral physical module or separate, physically-
independent modules. In either case the scalar and vector CPUs are
logically integrated, sharing the same memory and transferring data over
a dedicated, high-speed internal path. Because the CPUs are thus tightly-
coupled, use of the vector CPU foregoes the expense of I/O operations.

The scalar and vector CPUs operate asynchronously with respect to each
other. The scalar CPU fetches and decodes all instructions issued by the
current image and executes all scalar instructions. When it encounters a
vector instruction, the scalar CPU passes it to the vector CPU. While the
vector CPU is executing this instruction, the scalar CPU continues to fetch
and decode instructions, executing any scalar instruction it encounters
and sending any vector instructions it encounters to the vector CPU.

The vector processor maintains a queue of pending instructions in which
it places instructions it receives while it is busy. The VMS operating
system and its vectorizing compilers help ensure that the activities of both
scalar and vector CPUs are synchronized. (Section 2.3.7 describes those
situations in which vectorized VAX MACRO programs must enforce scalar
and vector CPU synchronization.)

Certain VAX system models offer a vector processing option. In

VAX 6000-400 series systems, the vector CPU occupies a slot on the
memory interconnect; the scalar-vector interconnect joins it to the scalar
CPU, which resides in an adjacent slot (see Figure 2-1). In VAX 9000
series systems, the vector processor is an integral part of the CPU, as
shown in Figure 2-2.

2.1.2

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

Figure 2-1 VAX 6000-400 Series Vector-Present Processor

Configuration

Scalar
CPU

Scalar
CPU

Scalar-Vector

Interconnect

Scalar
CPU

XMi

VAXBI Bus
Adapter

e

Vector
CPU

VAXBI Bus
Adapter

Memory
Controller

Memory
Controller

Array Bus

Atray Bus)

ZK-1945A~-GE

Like VAX scalar processing systems, a VAX vector processing system can
participate as a member of a VAXcluster or as a node in a network, or it

can be run as a standalone system.

Vectorized Programs

The benefits of vectorization depend, to a large degree, on the specific
techniques and algorithms of an application. CPU-intensive applications
involving repeated operations on groups of simple elements are well-suited
to vectorization. VAX vector processing systems are particularly beneficial
in the fields of seismic analysis, weather forecasting, molecular modeling,
computational fluid dynamics, signal processing, financial modeling, and

finite element analysis.

2-3

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

2-4

Figure 2-2 VAX 9000 Series Vector-Present Processor Configuration

Scalar .| | Scalar
CPU CPU cPU CPU Memory
.,."'Vector ',-".Vector

System Control Unit

I/O Control Unit

ZK-1944A-GE

There are several methods you can use to produce a vectorized program in
a VMS system.

Most applications that benefit from vector processing can be developed

as scalar programs in a high-level language and then submitted to a
vectorizing compiler for that language. A vectorizing compiler, such

as the VAX Fortran High Performance Option (HPO), can recognize
sections of code within a program, usually inside formal loops, that can
be vectorized. It analyzes data dependences, identifies other inhibitors to
vector processing, and restructures code sequences to allow the compiler to
generate optimized VAX vector instruction sequences.

Additionally, applications can be vectorized by a call to the vectorized
routines in the VMS Run-Time Library mathematics facility (RTL MTH$)
or to the vectorized routines within the optional DIGITAL Extended Math
Library (DXML):

¢ The vectorized RTL MTHS$ routines that can be called by a high-
level language application include the Level 1 Basic Linear Algebra
Subroutines (BLAS) and First-Order Linear Recurrence (FOLR)
routines. In addition, VAX vectorizing compilers (and programs
written in VAX MACRO) can generate calls to vectorized versions
of the standard scalar RTL MTHS$ routines. (The vectorized RTL
MTHS$ routines are introduced in Section 2.3.1 and fully discussed in
the VMS RTL Mathematics (MTHS) Manual.)

@

@

O

C

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

¢ The DIGITAL Extended Math Library (DXML) is an optional software
product that provides additional vectorized mathematics routines such
as BLAS Level 1-extended, 2, and 3, plus signal processing routines.

Finally, those programs that require strict control over the VAX vector
hardware can be written in VAX MACRO and use the VAX vector
instructions directly.

The terms vectorized program, vectorized application, and
vectorized image all refer to programs produced by a vectorizing
compiler, programs that call one or more vectorized routines, and programs
written in VAX MACRO that issue VAX vector instructions. A vectorized
image from any of these categories eventually results in the execution of
one or more vector instructions that transform its process into a vector
consumer.

See Section 2.3 for an overview of the VMS vector processing programming
environment.

2.1.3 VMS Support for Vector Processing

C

C

The VMS operating system provides fully-shared, multiprogramming
support for VAX vector processing systems. By default, VMS loads vector
processing support code when initializing a VAX system that includes
vector-present processors but does not load it when initializing vector-
absent systems. (A system manager can control this behavior by using the
SYSGEN parameter VECTOR_PROC, as described in Section 2.2.1.) The
presence of vector support code in a system has little effect on processes
running in a scalar-only system or on scalar processes running in a vector-
present system. If many processes must simultaneously compete for
vector processor resources in a system, the system manager can maintain
good performance by adjusting system resources and process quotas as
indicated in Section 2.2.3.1.

The VMS operating system makes the services of the vector processor
available to system users by means of a software abstract known as a
capability. A system manager can restrict the use of the vector processor
to users holding a particular identifier by associating an access control list
(ACL) with the vector capability object. (See Section 2.2.4 for additional
information.)

2.1.3.1

Life of a Vector Consumer

As shown in Figure 2-3, a process begins execution as a scalar
consumer, partaking of the resources of a scalar processor or the scalar
component of a vector-present processor.

When the image executing within the process’s context issues its first
vector instruction, VMS marks the process as requiring the system’s vector
capability. It also allocates sufficient system nonpaged dynamic memory
in which to store this process’s vector context. The vector context of a
process consists of the contents of the vector registers VO through V15, the
contents of the vector control registers (VCR, VLR, and VMR), the vector
processor status, and the vector exception state.

2-5

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

Figure 2-3 Life of a Vector Consumer

can be scheduled on . requires system vector

scalar processor or : capability, must be scheduled

scalar/vector processor pair . on scalar/vector processor pair
image activation

issues vector :
instruction

VECTOR
CONSUMER

SCALAR
CONSUMER

: vectorized
: image exits

issues no vector
: instruction for

: VECTOR_MARGIN
: quanta

vectorized
image exits

MARGINAL
VECTOR
CONSUMER

issues vector :
instruction

ZK-1943A-GE

A process requiring the vector capability and having a vector context is
known as a vector consumer. VMS must schedule a vector consumer
on a vector-present processor. As long as it remains a vector consumer, a
process is effectively prohibited from executing on any scalar processor in
the system.

However, over the course of its execution, a typical vectorized image
issues sequences of scalar instructions intermixed with sequences of vector
instructions. For those periods in which it performs scalar operations
exclusively, a process can relinquish its need for the vector capability

and become eligible for execution on any processor in the system. VMS
preserves the vector context of any such marginal vector consumer in
the expectation that it will eventually issue another vector instruction and
again become a vector consumer.

In a system in which many vector consumers are competing for the vector
processor, the dynamic transition of vector consumers to marginal vector
consumers (and back again) allows VMS to more efficiently distribute
vector processor resources and enhances the performance of vectorized
applications. Note that a system manager can control the transition of a
vector consumer to a marginal vector consumer by setting the SYSGEN
parameter VECTOR_MARGIN (as discussed in Section 2.2.3.2).

Ultimately, a vector consumer or marginal vector consumer reverts to
being a scalar consumer when the vectorized image it is executing exits.

2-6

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

In the course of system activity, another process could preempt the
execution of a vector consumer on a vector-present processor. When

this occurs, VMS immediately saves the vector consumer’s scalar context,
as it does for traditional scalar processes. However, VMS allows its vector
context to remain intact in the vector CPU. Depending upon the nature of
the intervening processes scheduled on that processor, VMS, in most cases,
tries to reschedule a vector consumer on the vector-present processor on
which it was last scheduled.

Because scalar consumers and marginal vector consumers do not use the
vector CPU, they do not disturb the vector context of the latest vector
consumer on the vector-present processor on which they are scheduled.
If only processes of these types were scheduled on the vector-present
processor since the vector consumer last ran, the vector consumer can
resume execution on that processor without the overhead associated with
a restoration of its vector context from memory. This is known as “fast”
vector context switch.

Other vector consumers, however, do use the vector CPU. When placing a
vector consumer into execution on a vector-present processor, VMS stores
in memory the vector context of the processor’s latest vector consumer.
When it later reschedules this vector consumer, VMS can place it into
execution on any vector-present processor in the system, but it must
restore its vector context from memory. This is known as “slow” vector
context switch.

Slow vector processing context switches are most likely when there are
more vector consumers than vector-present processors in the systems. A
system manager can adjust system parameters (including the VECTOR _
MARGIN parameter) and system resources to help reduce the number of
slow vector context switches as described in Section 2.2.

2.1.3.2 VAX Vector Instruction Emulation Facility (VVIEF)

The VAX Vector Instruction Emulation Facility (VVIEF) is a standard
feature of the VMS operating system that allows vectorized applications to
be written and debugged on a VAX system in which vector processors are
not available. VVIEF emulates the VAX vector processing environment,
including the nonprivileged VAX vector instructions and the VMS vector
system services (described in Sections 2.3.2, 2.3.3, and 2.3.4). Use of
VVIEF is restricted to user mode code.

VVIEF is strictly a program development tool and not a run-time
replacement for vector hardware. There is no performance benefit from
vectorizing applications to run under VVIEF; vectorized applications
running under VVIEF typically execute five times slower than their scalar
counterparts.

VMS supplies the VVIEF bootstrap code as an executive loadable

image. The system manager invokes the command procedure
SYS$UPDATE:VVIEF$INSTAL.COM to cause VMS to load VVIEF at

the next system boot and each successive system boot. Note that, in the
presence of VMS vector support code, VVIEF remains inactive. Although it
is possible to prevent the loading of VMS vector support code in a vector-
present system (see Section 2.2.1) and activate VVIEF, there are few
benefits. Should the only scalar-vector processor pair in the system fail,

2-7

Introduction to Vector Processing
2.1 Overview of the Vector Processing Environment

the execution of preempted vectorized applications will not be resumed
under the emulator.

See Section 2.2.6 for additional information on loading and unloading
VVIEF.

2.2 Managing the Vector Processing Environment

Managing a VAX vector processing system includes the following tasks:

* Loading the VMS vector processing support code

* Configuring a vector processing system

* Managing processes requiring the system’s vector processing resources

¢ QObtaining information about the status and use of the system’s vector
processing resources

¢ Loading the VAX vector emulation facility (VVIEF) bootstrap code

This section describes the features VMS has introduced or enhanced to
facilitate the accomplishment of these tasks. It concludes with a list of
messages VMS uses to report information about the condition of the vector
processing system.

2.2.1 Loading the VMS Vector Processing Support Code

By default, in a VAX vector processing system, VMS automatically loads
the vector processing support code at boot time. You can override the
default behavior by setting the static system parameter VECTOR_PROC
as described in Table 2-1.

Table 2-1 Settings of VECTOR_PROC System Parameter

Value Result

0 Do not load the vector processing support code, regardless of the system
configuration.

1 Load the vector processing support code if there is at least one vector-
present processor. This is the default value.

2 Load the vector processing support code if the system is vector capabie.

This setting is most useful for a system in which processors have separate
power supplies. With this setting, you can reconfigure a vector processor
into the system without rebooting the VMS operating system.

2.2.2 Configuring a VMS Vector Processing System

2-8

You can add or remove a vector-present processor to or from a VMS
multiprocessing configuration at boot time by using the SYSGEN
parameter SMP_CPUS or at run time by using the DCL commands START
/CPU and STOP/CPU. Note that VMS treats the scalar and vector CPU
components of a vector-present processor as a single processor, starting
them and stopping them together.

C

G

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

At boot time, the setting of the SYSGEN parameter SMP_CPUS identifies
which secondary processors in a VMS multiprocessing system are to be
configured, including those processors that are vector present. (VMS
always configures the primary processor.) The default value of —1

boots all available processors, scalar and vector-present alike, into the
configuration. (See the VMS System Generation Utility Manual for
additional information on this parameter.) Note that, prior to starting a
vector-present processor, you should make sure that the vector processing
support code (see Section 2.2.1) is loaded at boot time. Otherwise,
processes will only be able to use the scalar CPU component of the
vector-present processor.

To bring secondary processors into a running VMS multiprocessing system,
you use the DCL command START/CPU. To remove secondary processors
from the system, use the STOP/CPU commands. Again, you must make
sure that the vector processing support code has been loaded at boot time
for the vector CPU component of vector-present processors started in this
way to be utilized.

However, note that if you enter a STOP/CPU command that would cause
the removal of a vector-present processor that is the sole provider of the
vector capability for currently active vector consumers, the command
fails and generates a message. In extreme cases, such as the removal
of a processor for repair, you can override this behavior by entering the
command STOP/CPU/OVERRIDE. This command stops the processor,
despite stranding processes.

When a STOP/CPU/OVERRIDE command is entered for a vector-present
processor, or when a vector-present processor fails, VMS puts all stranded
vector consumers into a CPU-capability-wait (RSN$_CPUCAP) state until
a vector-present processor is returned to the configuration. To any other
process that subsequently issues a vector instruction (including a marginal
vector consumer), VMS returns a “requested CPU not active” message

(CPUNOTACT).

See the VMS DCL Dictionary for additional information on the
START/CPU and STOP/CPU commands.

Managing Vector Processes

As described in Section 2.1.3, VMS scheduling algorithms automatically
distribute vector and scalar processing resources among vector consumers,
marginal vector consumers, and scalar consumers. However, VAX vector
processing configurations vary in two important ways:

* The amount of vector processing activity the configuration must
accommodate

* The number of vector-present processors available in the configuration
to service vector processing needs

2-9

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

2-10

In a configuration in which there are more vector consumers in a system
than there are scalar-vector processor pairs to service them, vector
consumers share vector-present processors according to process priority.
At a given priority, VMS schedules vector consumers on a vector-present
processor in a round-robin fashion. Each time VMS must schedule a new
vector consumer on a vector-present processor, it must save the vector
context of the current vector consumer in memory and restore the vector
context of the new vector consumer from memory. When such “slow”
vector context switches occur too frequently, a significant portion of the
processing time is spent on vector context switches relative to actual
computation.

Systems that have heavy vector processing needs should be adequately
configured to accommodate those needs. There are, however, some
mechanisms a system manager can use to tune the performance of an
existing configuration.

Adjusting System Resources and Process Quotas

Systems in which several vector consumers are active simultaneously
might experience increased paging activity as processes share the available
memory. To reduce process paging, you might need to use the Authorize
Utility to adjust the working set limits and quotas of the processes running
vectorized applications. An increase of the process maximum working set
size (SYSGEN parameter WSMAX) might also be necessary. Additionally,
a vectorized application can use the Lock Pages in Working Set system
service (SYS$LKWSET) to enhance its own performance.

VMS allots to each vector consumer 8 kilobytes of system nonpaged
dynamic memory in which VMS stores vector context information.
Depending on how many vector consumers are active in the system
simultaneously, you might need to adjust the SYSGEN parameter
NPAGEDYN. To determine the current usage of nonpaged pool, use the
DCL command SHOW MEMORY/POOL/FULL, which displays the current
size of nonpaged pool in bytes.

See the VMS System Generation Utility Manual and the VMS Authorize
Utility Manual for additional information on these mechanisms.

To obtain optimal performance of a VAX vector processing system, you
should take some care to set up generic batch queues that avoid saturating
the system’s vector resources. If a queue contains more active vectorized
batch jobs than there are vector-present processors in the system, a
significant portion of the processing time will be spent on vector context
switches.

The recommended means for dispatching vectorized batch jobs to a VAX
vector processing system is to set up a separate queue (for instance,
VECTOR_BATCH) with a job limit equal to the number of vector-present
processors in the system. When submitting vectorized batch jobs, users
should be encouraged to submit them to this generic vector processing
batch queue.

O

N

O

C

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

2.2.3.2 Distributing Scalar and Vector Resources Among Processes
As a vector consumer, a process must be scheduled only on a vector-
present processor. If the image the process is executing issues only scalar
instructions for a period of time and must share the scalar-vector processor
pair with other vector consumers, its inability to run on an available scalar
processor could hamper its performance and the overall performance of the
system.

By default, VMS assumes that, if a vector consumer has not issued a
vector instruction for a certain period of time, it is unlikely that it will
issue a vector instruction in the near future. VMS relinquishes this
process’s need for the vector capability, classifying it as a marginal vector
consumer.

0 In an asymmetric vector processing configuration, detection of marginal
/ vector consumers achieves the following desirable effects:

¢ Because a marginal vector consumer is eligible to run on a larger set
of processors, its response time will improve.

¢ The scheduling of marginal vector consumers on scalar processors
reduces the contention for vector-present processors.

¢ Because vector consumers issuing vector instructions are more likely
the be scheduled on vector-present processors, the vector CPU is more

O efficiently used.

A system manager uses the SYSGEN parameter VECTOR_MARGIN to
establish the interval of time at which VMS checks the status of all vector
consumers. The VECTOR_MARGIN parameter accepts an integer value
between 1 and -1 (FFFFFFFFg). This value represents a number of
consecutive process quanta (as determined by the SYSGEN parameter
QUANTUM). If the process has not issued any vector instructions in the
specified number of quanta, VMS declares it a marginal vector consumer.
O A value of -1 disables the checking mechanism.

The default value of the VECTOR_MARGIN parameter is 1001.

2.2.4 Restricting Access to the Vector Processor by Using ACLs

Using the SET ACL and SHOW ACL commands, a system manager
can restrict the use of the vector processor to users holding a particular
identifier. By associating an access control list (ACL) with the vector
capability, a university might limit use of the vector processor to faculty
and students in an image processing course, or a service bureau might
charge users for access to the vector capability, time spent on the vector
processor, or both.

When using either the SET ACL or SHOW ACL command with Version
5.4 of the VMS operating system, the system manager can specify a
new object type, CAPABILITY, as the argument to the /OBJECT_TYPE
qualifier. This object type is a system capability, such as the ability to
Q process VAX vector instructions. Currently, the only defined object name
for the CAPABILITY object type is VECTOR. Therefore, when using the
SHOW ACL or SET ACL command, the system manager must supply

2-1

2.2.5

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

the capability name (VECTOR) as the argument to the object type, as in
the following examples. (For additional information on the SET ACL and
SHOW ACL commands, see the VMS DCL Dictionary.)

The following DCL command establishes one or more access control entries
(ACEs) on the vector capability.

$ SET ACL/OBJECT=CAPABILITY VECTOR/ACL[=(acel,...]1)]

Note that you must be in the SYSTEM user category (as described in VMS
DCL Concepts Manual) to set an ACL on the vector capability.

The following DCL command displays the ACL on the vector capability.
$ SHOW ACL/OBJECT=CAPABILITY VECTOR

Note that the ACL is on the vector capability, not on the use of any or all
vector-present processors in the system. For this reason, VMS can still
schedule processes without permission to use the vector capability on a
vector-present processor. However, these processes can use only the scalar
CPU component of the processor and cannot execute vector instructions.
Likewise, because the ACL is on the vector capability and not on a vector-
present processor, you cannot establish an ACL to force long-running jobs
to a specific processor.

The Change ACL ($CHANGE_ACL) and Check Access ($CHECK_
ACCESS) system services provide means for setting and removing ACLs
on the VECTOR capability and for checking a process’s ability to use
vector processing resources. See Section 22.5 for additional information.

Obtaining Information About a Vector Processing System

2-12

You can obtain information about the status of the vector processing
system and the use of the system by individual processes through various
means, including:

¢ The DCL lexical functions F$GETJIPI and F$GETSYI

* The DCL command SHOW CPU

e The DCL commands SHOW PROCESS and LOGOUT/FULL
¢ The Accounting Utility (ACCOUNTING)

¢ The Error Log Utility (ERROR LOG)

¢ The Monitor Utility (MONITOR)

O

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

2.2.5.1 DCL Lexical Functions FSGETJPI and FSGETSYI
The DCL lexical function F$GETJIPI accepts the following items and
returns the corresponding information regarding the vector status of a
specified process:

Return

ltem Type Information Returned

FAST_VP_SWITCH Integer Number of times this process has issued a vector instruction that
resulted in an inactive vector processor being enabled without the
expense of a vector context switch

SLOW_VP_SWITCH Integer Number of times this process has issued a vector instruction that
resuited in an inactive vector processor being enabled with a full vector
context switch

VP_CONSUMER Boolean Flag indicating whether the process is a vector consumer

VP_CPUTIM Integer Total amount of time the process has accumulated as a vector

consumer

The DCL lexical function F$GETSYI accepts the following items and
returns the corresponding information regarding the status of the vector
processing system:

Return
ltem Type Information Returned
VP_NUMBER Integer Number of vector processors in the system
VP_MASK Integer Mask indicating which processors in the system have vector
COprocessors
VECTOR_EMULATOR Integer Flag indicating the presence of the VAX vector instruction emulator

facility (VVIEF) in the system

See the VMS DCL Dictionary for additional information about the DCL
lexicals F$GETJPI and F$GETSYI.

2.2.52 SHOW CPU Command
The SHOW CPU/FULL command lists the capabilities of the specified
CPU. The manager of a VAX vector processing system can issue this
command to determine the presence of the vector capability in the system
prior to executing a STOP/CPU command.

See the VMS DCL Dictionary for additional information about the SHOW
CPU command.

2,253 SHOW PROCESS and LOGOUT/FULL Commands
If the target process has accrued any time as a vector consumer scheduled
on a vector-present processor, the DCL commands SHOW PROCESS and
LOGOUT/FULL display the elapsed vector CPU time and the charged
vector CPU time, respectively.

2-13

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

2-14

To accumulate vector CPU time, a process must be a vector consumer (that
is, require the system vector capability) and be scheduled on a vector-
present processor. VMS still charges the vector consumer vector CPU
time, even if, when scheduled on the vector-present processor, it does not
actually use the vector CPU. Note that, because scalar consumers and
marginal vector consumers do not use the vector CPU, they do not accrue
vector CPU time, even when scheduled on a vector-present processor.

See the VMS DCL Dictionary for additional information about the SHOW
PROCESS and LOGOUT commands.

2.2,5.4 Vector Processing Support Within the VMS Accounting Utility (ACCOUNTING)

In its full listing format, the VMS Accounting Utility displays the vector
CPU time accumulated by a process or an image during its life span.

A process accumulates vector CPU time while it is a vector consumer
(that is, requiring the system vector capability) and it is scheduled on a
vector-present processor. VMS still charges the vector consumer vector
CPU time, even if, when scheduled on the vector-present processor, it does
not actually use the vector CPU. Note that, because scalar consumers and
marginal vector consumers do not use the vector CPU, they do not accrue
vector CPU time, even when scheduled on a vector-present processor.

An image accrues vector CPU time while it is executing within the context
of a vector consumer on a vector-present processor. Because VMS marks
all processes, including vector consumers, as scalar consumers at image
rundown, it is impossible for an image that issues only scalar instructions
to accumulate vector CPU time.

The /SORT qualifier to the ACCOUNTING command accepts the
VECTOR_PROCESSOR keyword and sorts the accounting records
according to ascending or descending vector CPU time. The /REPORT
qualifier also accepts the VECTOR_PROCESSOR keyword and produces a
summary report of vector CPU usage.

See Section 2.3.8 for a description of the vector CPU time field in the
ACCOUNTING resource packet. The VMS Accounting Utility Manual

provides a complete description of the VMS Accounting Utility.

2.2,5.5 Vector Support Within the Error Log Utility (ERROR LOG)

With Version 5.4 of the Error Log Utility, the /INCLUDE qualifier to the
ANALYZE/ERROR_LOG command accepts the device-class keyword
VECTOR, which produces an error log report that includes vector
processing errors. (Specifying the VECTOR keyword with the /EXCLUDE
qualifier excludes vector processing errors from the error log report.)

2.2.5.6 Vector Support Within the VMS Monitor Utility (MONITOR)

With Version 5.4 of the VMS Monitor Utility, the new MONITOR VECTOR
command initiates monitoring of the VECTOR class and displays the
number of 10-millisecond clock ticks per second in which one or more
vector consumers have been scheduled on each currently configured vector
processor.

, Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

See Section 16.3 for a complete description of the MONITOR VECTOR
command and the VECTOR class. See Section 2.3.9 and Section 16.4 for
related information about the VECTOR class record and format. Refer to
the VMS Monitor Utility Manual if you need additional information about
the VMS Monitor Utility.

Loading the VAX Vector Instruction Emulation Facility (VVIEF)

The VAX Vector Instruction Emulation Facility (VVIEF) is a standard
feature of the VMS operating system that allows vectorized applications
to be written and debugged on a VAX system in which vector processors
are not available. VVIEF is intended strictly as a program development
tool and not as a run-time replacement for vector hardware. There is no
performance benefit from vectorizing applications to run under VVIEF;
vectorized applications running under VVIEF typically execute five times
slower than their scalar counterparts.

VMS supplies the VVIEF bootstrap code as an executive loadable
image. To cause VMS to load VVIEF at the next system boot and

at each subsequent system boot, invoke the command procedure
SYS$UPDATE:VVIEF$INSTAL.COM. To unload VVIEF, invoke the
command procedure SYS$UPDATE:VVIEF$DEINSTAL.COM and reboot
the system. You can determine the presence or absence of VVIEF on a
system by issuing the following DCL commands:

$ X = FS$GETSYI ("VECTOR EMULATOR")
$ SHOW SYMBOL X
X =1 Hex = 00000001 Octal = 0000000001

A return value of 1 indicates the presence of VVIEF; a value of 0 indicates
its absence.

Note that, although VVIEF might be loaded into the system, in the
presence of VMS vector support code, it remains inactive. Although it is
possible to prevent the loading of VMS vector processing support code in
a vector-present system (see Section 2.2.1) and activate VVIEF, there are
few benefits. Should the only vector-present processor in the system fail,
the execution of preempted vectorized appli¢ations will not resume under
the emulator.

System Messages Related to Vector Processing Activities

Table 2-2 lists the system messages that might result from vector activity
in a VAX vector processing system. It describes the conditions that
might have resulted in the message and suggests how you can repair

the condition causing the error.

For information on how VMS reports exception conditions to condition
handlers, see Section 2.3.6.

2-15

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

Table 2-2 System Messages Relating to Vector Processing

Message Message Text Description and Recovery

ACCVIO access violation, reason mask = See the VMS System Messages and Recovery
xx, virtual address = location, PC = Procedures Reference Manual for a description of
location, PSL = xxxxxxx the ACCVIO message. The lowest three bits of the

reason mask indicate that an instruction has caused

a length violation (bit 0), referenced the process page
table (bit 1), and attempted a read or modify operation
(bit 2). VMS defines two additional bits to reflect vector
processing memory management exceptions: a vector
operation on an improperly-aligned vector element in
memory (bit 3} and vector instruction reference to an /O
space address (bit 4).

BADCONTEXT invalid or corrupted context The vector state of a mainline routine as saved in
encountered process P1 space has been corrupted and cannot be
restored. A call to the Restore Vector State system
service (SYS$RESTORE_VP_STATE) can result in this
error, if some coding error has overwritten the saved
vector state. (See Chapter 22 for more on this system
service.)

CPUNOTACT requested CPU not active The current process requires system capabilities that are
not available or no longer available among the active
processors in the system. If this message is associated
with a vector disabled (VECDIS) status code, a vector-
present processor within the system is not available, has
failed, or has been removed from the system.

See Section 2.2.2.

EXQUOTA exceeded quota If this message is associated with a vector disabled
(VECDIS) status code, the process’s paging file quota
prohibits the allocation of sufficient process memory for
storing its mainline vector state. (See Section 2.2.3.1.)

ILLVECOP illegal vector opcode fault, An operation code designated as an illegal vector opcode
opcode="xx’, PC="location’, by the VAX architecture has been encountered during
PSL="xxxxxxxx’ the execution of an image.

See Section 2.3.6 and the VAX MACRO and Instruction
Set Reference Manual for additional information about
this exception.

IMGVEXC image exiting with pending vector An exception has resulted due to the execution of a
exceptions vector instruction issued by an image, but the image has
exited before the exception could be delivered.

See Section 2.3.7 4.

INSFMEM insufficient dynamic memory If this message is associated with a vector disabled
(VECDIS) status code, the current process has issued
a vector instruction, but insufficient system nonpaged
dynamic memory exists to establish the process as a
vector consumer. (See Section 2.2.3.1.)

(continued on next page)

2-16

O

@

Introduction to Vector Processing

2.2 Managing the Vector Processing Environment

Table 2-2 (Cont.) System Messages Relating to Vector Processing

Description and Recovery

Message Message Text
INSFWSL insufficient working set limit
NOPRIV no privilege for attempted operation

NOSAVPEXC no saved vector exception for the
exception-id

VARITH vector arithmetic fault, summary=xx,
mask=xx, PC=location,
PSL=XXXXXXXX

If this message is assaciated with a vector disabled
(VECDIS) status code, the process’s current working set
list limit does not allow its mainline vector state to be
resident in memory. (See Section 2.2.3.1.)

If this message is associated with a vector disabled
(VECDIS) status code, an ACL on the system’s vector
capability has prevented the process from executing
vector instructions. (See Section 2.2.4.)

A call was made to the Restore Vector Processing State
system service (SYS$RESTORE_VP_EXCEPTION)
that specified a value for an exception ID that does not
correspond to that of any saved vector exception state.
(See Chapter 22 for more on this system service.)

A vector operate instruction, executing within the current
context, has resulted in a vector arithmetic trap. (See
Section 2.3.6 for assistance in interpreting the exception
summary mask, vector register mask, PC, and PSL.)

Because arithmetic operations are performed in a
substantially different manner on vectors than on
scalars, the resolution of vector arithmetic exceptions
requires some special techniques. (See Section 2.3.6
for information on the mechanisms by which exceptions
are reported and identified.) One or a combination of
several debugging strategies can help you determine
which calculations resulted in the reported error or errors:

+ Recompile the source with the /DEBUG,
/NOVECTOR, /CHECK=BOUNDS qualifiers; relink
using the /DEBUG and /MAP qualifiers; and run the
resulting scalar image with the /DEBUG qualifier.

A scalar arithmetic exception should occur at the
calculation that caused the original vector arithmetic
exception.

* Recompile the source using the /DEBUG,
/LIST, and /VECTOR qualifiers; relink using
the /DEBUG and /MAP qualifiers; and run the
resulting image with the /DEBUG qualifier. (if the
/ASSUME=NOACCURACY_SENSITIVE qualifier
was used in the original compilation, specify
/ASSUME=ACCURACY_SENSITIVE.) Use the
SET VECTOR_MODE SYNCHRONIZED or
the SYNCHRONIZE VECTOR_MODE debugger
command to guarantee that all exceptions resulting
from vector operations be delivered before the
execution of the next scalar instruction. Step
through the program, inspecting the contents of
those vector registers that are involved in each
vector operation.

(continued on next page)

2-17

Introduction to Vector Processing

2.2 Managing the Vector Processing Environment

Table 2-2 (Cont.) System Messages Relating to Vector Processing

Message

Message Text

Description and Recovery

VASFUL

VECALIGN

virtual address space is full

access violation, reason mask =
xX, virtual address = location, PC =
location, PSL = xxxxxxx

When a vector operate instruction causes an
floating-point exception in a vector element, the
exception result is encoded into the corresponding
element of the destination register. When the
destination vector register is the target of an
EXAMINE/FLOAT debugger command, the debugger
displays the decoded exception message in the
associated vector element.

When a vector operate instruction causes an integer
overflow in a vector element, the corresponding
element of the destination register contains a value
that is larger than 32 bits, but of a different sign than
the instruction’s operands. When the destination
vector register is the target of an EXAMINE
debugger command, you must inspect each element
for such results.

If this message is associated with a vector disabled
(VECDIS) status code, insufficient process virtual
address space exists to allow the current process’s
mainline vector state to be saved. (See Section 2.2.3.1.)

The current process has issued a VAX vector memory
access instruction that has attempted an operation

on an improperly-aligned vector element. The VAX
architecture requires that vector operands to vector
memory access instructions be naturally aligned in
memory. Longwords must be aligned on longword
boundaries; quadwords must be aligned on quadword
boundaries. See Section 2.3.6. and the VAX MACRO
and Instruction Set Reference Manual for additional
information.

2-18

(continued on next page)

N
R

C

C

Introduction to Vector Processing
2.2 Managing the Vector Processing Environment

Table 2-2 (Cont.) System Messages Relating to Vector Processing

Message Message Text Description and Recovery
VECDIS vector disabled fault, code=xx, PC = The current process has issued a vector instruction
location, PSL = xxxxxxx that requires that a vector processor become active.

Under normal circumstances, this event is not reported
to a system user. However, if the vector processor was
unavailable due to some previously unreported condition,
the VECDIS message is issued in association with one
of the following messages.

* BADCONTEXT
« CPUNOTACT

+ EXQUOTA
* INSFMEM
* INSFWSL
* MCHECK
*+ NOPRIV

+ VASFUL

See the description of the associated message in this
table and the VMS System Messages and Recovery
Procedures Reference Manual for additional information
on any specific error.

Programming in a Vector Processing Environment

Most applications that benefit from vector processing can be developed
as scalar programs in a high-level language and then submitted to a
vectorizing compiler for that language.

Additionally, applications can be vectorized by a call to the vectorized
routines in the VMS Run-Time Library mathematics facility (RTL MTH$)
or to the vectorized routines within the optional DIGITAL Extended Math
Library (DXML):

The vectorized RTL MTH$ routines that can be called by a high-
level language application include the Level 1 Basic Linear Algebra
Subroutines (BLAS) and First-Order Linear Recurrence (FOLR)
routines. In addition, VAX vectorizing compilers (and programs
written in VAX MACRO) can generate calls to vectorized versions

of the standard scalar RTL MTHS$ routines. (The vectorized RTL
MTHS$ routines are introduced in Section 2.3.1 and fully discussed in
the VMS RTL Mathematics (MTH$) Manual.)

The DIGITAL Extended Math Library (DXML) is an optional software
product that provides additional vectorized mathematics routines such
as BLAS Level 1-extended, 2, and 3, plus signal processing routines.

Finally, those programs that require strict control over the VAX vector
hardware can be written in VAX MACRO and use the VAX vector

inst

ructions directly.

2-19

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

Use of high-level interfaces to VAX vector processing systems, such as the
VAX Fortran High Performance Option (HPO) vectorizing compiler and
the vectorized RTL MTHS routines, provide a mechanism for quickly
developing a vectorized program that conforms to the requirements

of the VAX Procedure Calling and Condition Handling Standard and

the VAX vector architecture. For instance, VAX vectorizing compilers
and vectorized library routines automatically handle the complexities of
properly handling scalar-vector synchronization, vector memory alignment,
and the preservation of vector state across procedure calls. Additionally,
the VAX Fortran HPO vectorizing compiler can recognize sections of code
within a program, usually inside formal loops, that can be vectorized. It
analyzes data dependences, identifies inhibitors to vector processing, and
restructures code sequences to allow the compiler to generate optimized
VAX vector instruction sequences.

By contrast, VAX MACRO programmers must themselves ensure that
vector code conforms to the rules stated in the VAX MACRO and
Instruction Set Reference Manual and Section 2.3.7.

If you must write a vectorized program in VAX MACRO, you should be
aware of the following:

* You must specifically enable the processing of vector instructions by
the VAX MACRO assembler by assembling with the /ENABLE or
/NODISABLE qualifier to the MACRO command and supplying the
keyword VECTOR. You can also explicitly enable the assembly of
vector instructions by using the .ENABLE VECTOR directive.

¢ The VAX MACRO assembler parses the assembler notation form of
vector instructions and produces binary code in the instruction stream
form prescribed by the VAX vector architecture. The VAX MACRO
and Instruction Set Reference Manual describes both vector instruction
forms and presents the assembler notation form in its instruction

pages.

* VAX MACRO programs must synchronize the vector CPU’s memory
references across procedure calls, as well as guarantee that pending
vector exceptions are raised before crossing procedure boundaries. VAX
MACRO programs must also ensure that the vector CPU’s memory
references are synchronized with the scalar CPU’s memory references.
Section 2.3.7 and the VAX MACRO and Instruction Set Reference
Manual describes the mechanisms by which VAX MACRO code can
comply with these requirements.

¢ The VAX MACRO and Instruction Set Reference Manual lists several
additional restrictions, including the following:

— VAX MACRO programs must naturally align vector operands to
vector memory access instructions. Longwords must be aligned
on longword boundaries; quadwords must be aligned on quadword
boundaries.

— VAX MACRO instructions cannot reference addresses in I/O space.

2-20

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

— Vector instructions cannot be issued at elevated interrupt priority
levels (IPLs), specifically at or above IPL$_RESCHED. The vector
disabled handler will force a system crash with the VPIPLHIGH
bugcheck code (“IPL too high to use the Vector Facility”) when user
vector instruction is issued at or above IPL$ RESCHED.

The remainder of this section discusses the following topics:

O .

Vector routines in the MTH$ Run-Time Library
Obtaining information about a vector processing system
Releasing the vector processor

Preserving and restoring a routine’s vector state
Issuing vector instructions at high IPLs

Debugging a vector application

Servicing vector processing exceptions

Utilizing vector information contained within the informational
packets generated by the VMS Accounting Utility and VMS Monitor
Utility

O 2.3.1 Vector Routines in the MTH$ Run-Time Library

The RTL MTHS$ facility provides three sets of routines that allow
manipulation of vectors and perform operations on vectors:

The Basic Linear Algebra Subroutines (BLAS) Level 1 copy vectors,
swap the elements of two vectors, scale vector elements, perform
reduction operations on vectors, and effect a Givens plane rotation.
Scalar and vector versions of the BLAS Level 1 are provided in the
new BLAS1$ and VBLAS1$ facilities, respectively. BLAS Level 1
forms an integral part of many standard libraries such as LINPACK
and EISPACK. The version of the subroutines in the RTL VBLAS1$
facility have been tuned to the VAX architecture to take advantage of
vectorization.

The First Order Linear Recurrence (FOLR) routines provide a
vectorized algorithm for the linear recurrence relation. (The
traditional algorithm generally inhibits vectorization by using the
result of a previous pass through a loop as an operand in subsequent
passes through the loop.)

The FOLR routines in the RTL MTHS$ facility perform addition,
multiplication, or both addition and multiplication on recursion
elements, saving the result of each iteration in an array or saving
only the last result in a variable. The RTL MTHS$ facility supplies
these routines in four groups, each accepting any of four data types:
longword integer, F-floating, D-floating, or G-floating.

Certain key MTH$ routines have been vectorized to support Digital’s
vectorizing compilers, such as the VAX FORTRAN High Performance
Option (HPO). Vectorized versions of key F-floating, D-floating, and
G-floating scalar routines employ vector hardware to the fullest,

2-21

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

while maintaining results that are identical to those of their scalar
counterparts. '

Vectorized MTH$ routines are never called directly from a high-
level language program. At a call to a scalar version of one of these
routines, a vectorizing compiler automatically determines whether
an operation should be performed by the vector or scalar version of
a routine. VAX MACRO programs, however, can call the vectorized
MTHS$ routines directly.

See the VMS RTL Mathematics (MTHS) Manual for complete information
about these routines.

Note that the VAX FORTRAN HPO detects usage of the vectorizable
constructs within source code and automatically issues a call to the
appropriate RTL MTHS$ routines. See the description of the /BLAS
qualifier in the compiler documentation.

2.3.2 Obtaining Information About a Vector Processing System

2-22

The Get Job/Process Information system service (SYS$GETJPI) accepts
the following item codes and returns the indicated information about the
vector status of one or more processes in the system:

item Code Return Value

JPI$_FAST_VP_SWITCH Unsigned longword containing the number of times
this process has issued a vector instruction that
resulted in an inactive vector processor being enabled
without the expense of a vector context switch. This
count reflects those instances in which the process
has reenabled a vector processor on which the
process’s vector context has remained intact.

JPI$_SLOW_VP_SWITCH Unsigned longword containing the number of times
this process has issued a vector instruction that
resulted in an inactive vector processor being enabled
with a full vector context switch. This vector context
switch involves the saving of the vector context of
the process that last used the vector processor and
the restoration of the vector context of the current

process.

JPI$_VP_CONSUMER Byte, the fow-order bit of which, when set, indicates
that the process is a vector consumer.

JPI$_VP_CPUTIM Unsigned longword that contains the total amount
of time the process has accumulated as a vector
consumer.

The Get Systemwide Information system service (SYS$GETJPI) accepts
the following item codes and returns the indicated information about the
vector status of the system:

O

C

C

C

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

Item Code Return Value

SYi$_VP_NUMBER Unsigned longword containing the number of vector
processors in the system.

SYI$_VP_MASK Longword mask, the bits of which, when set,
indicate which processors in the system have vector
COprocessors.

SYI$_VECTOR_EMULATOR Byte, the low-order bit of which, when set, indicates
the presence of the VAX vector instruction emulator
facility (VVIEF) in the system.

See Section 22.5 (of this manual) and the VMS System Services Reference
Manual for additional information on the $GETJPI and $GETSYI system

services.

Releasing the Vector Processor

The Release Vector Processor system service (SYSSRELEASE_VP)
terminates the current process’s status as a vector consumer. Because
$RELEASE_VP declares that the process no longer needs the system’s
vector capability, VMS is no longer restricted to scheduling it on a vector-
present processor. As a result, the process can be placed into execution on
other CPUs in the system.

See Chapter 22 for a full description of the invocation format and functions
of this service.

Preserving and Restoring a Routine’s Vector State

The vector context of a process consists of the contents of the vector
registers VO through V15, the contents of the vector control registers (VLR,
VCR, and VMR), the vector processor status, and the vector exception
state. When a vectorized application involves calls among two or more
routines, each of which issues vector instructions, two components of a
process’s vector context must be considered:

* The vector registers that are shared across procedure calls

¢ The vector exception state that exists just prior to a procedure call or
return

The VAX Procedure Calling and Condition Handling Standard (see
Section 2.3.7.1) requires that calling and called procedures agree as to the
conventions by which they preserve and manipulate vector registers. For
languages such as VAX MACRO, which allows direct access of registers,
either the calling procedure or called procedure can save or restore vector
registers shared between routines.

The standard also requires that, if a procedure executes a vector
instruction that might possibly raise an exception, the procedure must
ensure that this exception is reported before it calls another procedure,
returns to its caller, or exits. If a vector exception were pending at the
time a procedure transferred control, it would be reported in the context
of a procedure that did not incur the exception. VAX vectorizing compilers

2-23

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

2-24

ensure that compiled code properly follows this requirement; calls to vector
routines in the RTL MTHS$ facility (as described in Section 2.3.1) also
comply with this prescription. However, vectorized code written in VAX
MACRO must adhere to the rules discussed in Section 2.3.7.4.

For those routines that can run asynchronously with respect to the
mainline routine—such as asynchronous system trap (AST) routines,
condition handlers, and exit handlers—VMS automatically handles the
saving and restoring of vector context. VMS supports vector usage in
these asynchronous routines by providing each routine that is active
asynchronously within a process with its own vector state.

The vector state of a routine reflects the vector context of the process

at the time of the routine’s execution or preemption, as the case may
be, when an AST is delivered to the process or a condition handler is
triggered. A process can have several vector states; for instance, one for
its mainline routine and one for an AST routine that has interrupted the
mainline. However, a process has only a single vector context, reflecting
its current vector state.

VMS automatically preserves the vector state of a routine as follows:

e When a user mode AST routine issues a vector instruction, VMS saves
the vector state of the mainline routine. It restores the mainline vector
state when the AST routine exits.

¢ When a user mode condition handler issues a vector instruction, VMS
saves the vector state of the mainline routine. It restores the mainline
vector state on continuing from the exception and on stack unwind.

¢ When calling an exit handler, VMS clears the vector exception state.

By default, when an asynchronous routine interrupts the execution of a
mainline routine, VMS creates a new vector state when the routine issues
its first vector instruction. At this point, the vector state of the mainline
routine is inaccessible to the asynchronous routine.

In certain cases, however, an AST routine or condition handler might
need to read or modify the saved exception state of the mainline routine.
To do so, the routine must call the Restore Vector State system service
(SYS$RESTORE_VP_STATE). $RESTORE_VP_STATE restores the vector
state of the process’s mainline routine.

In very rare cases, a procedure might need to preserve and restore the
current vector exception state across individual contexts that it creates
and maintains. For instance, a task manager could set up several discrete
tasks, each of which has its own vector state. To implement such a system,
the routine saves the contents of the appropriate vector registers and calls
the Save Vector Exception State (SYS$SAVE_VP_EXCEPTION) and
Restore Vector Exception State (SYS$RESTORE_VP_EXCEPTION) system
services.

The Save Vector Exception State service saves in memory any pending
vector exception state and clears the vector processor’s current exception
state." The Restore Vector Exception State service restores from memory
the vector state saved by a prior call to $SAVE_VP_EXCEPTION. After a

O

O

O

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

routine invokes this service, the next vector instruction issued within the
process causes the restored vector exception to be reported.

See Chapter 22 for a full description of the syntax and use of
the $SAVE_VP_EXCEPTION, $RESTORE_VP_EXCEPTION, and
$RESTORE_VP_STATE system services.

Debugging a Vectorized Program

The Version 5.4 of the VMS operating system supports the debugging

of vector applications by adding new capabilities to the VMS Debugger,
the VMS System Dump Analyzer (SDA), the debuggers of the VMS Delta
/XDelta Utility (DELTA/XDELTA), and the Patch Utility. Additionally, the
VMS exception detecting and reporting mechanism collects information
regarding the nature and context of vector processing errors. Section 2.3.6
describes the information VMS provides when reporting a vector
processing exception.

Vector Processing Support Within the VMS Debugger

Through enhancements and additions to its existing command set, the
VMS Debugger allows you to correct and tune vectorized applications.
VMS Debugger commands enable you to perform the following tasks:

e Control and monitor the execution of vector instructions with
breakpoints, watchpoints, and other mechanisms

* Examine and deposit into the vector control registers (VCR, VLR, and
VMR) and the vector registers (VO through V15)

* Examine and deposit vector instructions

* Perform masked operations on vector registers to display only certain
register elements or override the masking associated with a vector
instruction

¢ Control synchronization between the scalar and vector processors

* Save and restore the current vector state when using the CALL
command to execute a routine that might affect the vector state

* Display vector register data using a screen-mode display
* Display the decoded results of vector arithmetic exceptions
See Chapter 19 (of this manual) and the VMS Debugger Manual for

complete information about these and other functions of the VMS
Debugger.

2.3.5.2 Vector Processing Support Within the VMS System Dump Analyzer (SDA)

The System Dump Analyzer (SDA) provides several mechanisms for
examining vector instructions and vector context from a system dump file
or in a running system. They include the following:

* You can decode and display vector instructions using the EXAMINE
/INSTRUCTION command. This command displays the vector opcodes,
switches, and operands in the form and order defined by the VAX
MACRO assembler notation. Note that, when you use SDA to display

2-25

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

2-26

the contents of memory locations, vector instructions appear in the
instruction stream format defined by the VAX architecture: that is, an
opcode followed by the vector control word in immediate addressing
mode. (See the VAX MACRO and Instruction Set Reference Manual for
descriptions of the assembler notation and instruction stream formats
of vector instructions.)

You can examine the values of a process’s vector registers and
vector control registers by entering the SHOW PROCESS/VECTOR_
REGISTERS command. This command obtains the values of the
registers from the process’s vector context area. Note that the names
of these registers (VO through V15, VCR, VLR, and VMR) are not
defined in the SDA symbol table. You cannot display the current
contents of any of these registers using the EXAMINE or EVALUATE
command.

You can format the contents of a memory location as a process’s vector
context block. The symbol table SYS$SYSTEM:SYSDEF.STB contains
a definition of this structure. You must use the READ command to
load the symbols defined within this file into the SDA symbol table.

You can determine the presence and location of the VMS vector
processing support code (VECTOR_PROCESSING.EXE) and the
VAX Vector Instruction Emulation Facility (VVIEF) bootstrap code
(VVIEF$BOOTSTRAP.EXE) by entering the SDA command SHOW
EXECUTIVE. Both are executive loadable images. You can also use
the SDA command READ/EXECUTIVE to load definitions of locations
within these images into the SDA symbol table.

2.3.5.3 Vector Processing Support Within the VMS Delta/XDelta Utility
The VMS Delta/XDelta Utility (DELTA/XDELTA) provides mechanisms for
stepping through vector code, examining and decoding vector instructions,
and setting breakpoints at vector instructions. You can use the following
commands to debug a vectorized application:

The Open Location and Display Instruction in Instruction Mode
command (!) displays the vector opcodes, switches, and operands in
the form and order defined by the VAX MACRO assembler notation.
Note that, when you use DELTA/XDELTA to display the contents of
memory locations, vector instructions appear in the instruction stream
format defined by the VAX architecture: that is, an opcode followed
by the vector control word in immediate addressing mode. (See the
VAX MACRO and Instruction Set Reference Manual for descriptions
of the assembler notation and instruction stream formats of vector
instructions.)

The Step Instruction command (S) enables you to single step through
vector instructions.

The List Names and Locations of Loaded Executive Images command
(;L) enables you to determine the presence and location of the VMS
vector processing support code (VECTOR_PROCESSING.EXE) and
the VAX Vector Instruction Emulation Facility (VVIEF) bootstrap code
(VVIEF$BOOTSTRAP.EXE).

N

~
\

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

¢ The Breakpoint (;B) and Proceed from Breakpoint (;P) commands allow
you to set and proceed from breakpoints at a vector instruction.

Note that, because the names of the vector registers (VO through V15)
and vector control registers (VCR, VLR, and VMR) are not defined in
the DELTA/XDELTA symbol table, you cannot display their values using
DELTA/XDELTA.

2.3.5.4 Vector Processing Support Within the VMS Patch Utility
Enhancements to the VMS Patch Utility allow it to interpret and display
vector instructions that are replaced or deposited in a VAX MACRO
program image file.

When issuing a REPLACE/INSTRUCTION instruction, you must supply
O the vector opcode, switches, and operands in the form and order defined
by the VAX MACRO assembler notation. When displaying the contents
of an image in instruction format, the Patch Utility produces vector
instructions in this format. However, its hexadecimal listings present
vector instructions in the instruction stream format defined by the VAX
architecture: that is, an opcode followed by the vector control word in
immediate addressing mode. (See the VAX MACRO and Instruction
Set Reference Manual for descriptions of the assembler notation and
instruction stream formats of vector instructions.)

C 2.3.6

Servicing Vector Exceptions

During the execution of an image, the image can incur a fatal error known

as an exception condition. If the image has not declared a condition

handler, the system forces the image to exit and displays a message

indicating the reason for the exception. If the image has declared a

condition handler, VMS transfers control to the handler to manage the

exception. (See Introduction to VMS System Services for a description of
C how to write and declare a condition handler.)

There are two major classes of vector processing exceptions:

* Memory management exceptions, including access violations, vector
alignment faults, and vector instruction references to I/O space

* Vector arithmetic exceptions

VMS reports exceptions in the first category (memory management
exceptions) as forms of access violation, using the signals SS$_ACCVIO
and SS$_VECALIGN (see Table 2-3). The exception argument list

VMS supplies when signaling vector memory management exceptions

is identical to the one it supplies with scalar access violations, except that
VMS defines two additional bits in the reason mask to indicate the nature
of the vector exception: a vector operation on an improperly-aligned vector
element in memory (bit 3) and vector instruction reference to an I/O space
address (bit 4).

2-27

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

2-28

VMS reports exceptions in the second category (vector arithmetic
exceptions) using the signal SS$_VARITH (see Table 2-3). As defined

by the VAX vector architecture (see the VAX MACRO and Instruction

Set Reference Manual), vector operate instructions always execute to
completion. If an exception occurs, the default result is written as follows:

¢ The low-order 32 bits of the true result for integer overflow.
¢ Zero for floating underflow if exceptions are disabled.

* An encoded reserved operand for floating divide by zero, floating
overflow, reserved operand, and enabled floating underflow. For vector
convert instructions that convert floating-point data to integer data,
where the source element is a reserved operand, the value written to
the destination element is UNPREDICTABLE.

Table 2-3 provides a summary of the means by which VMS signals
vector processing exceptions and the arguments it provides for condition
handlers. For information on how these exception conditions are reported
by the VMS message facility, see Section 2.2.7.

O

O

S,

Table 2-3 Summary of Exception Conditions

Introduction to Vector Processing

2.3 Programming in a Vector Processing Environment

Exception Type Description Arguments
SS$ ACCVIO Fault Access violation Two, as follows:
1 Reason for access violation. This is a mask with the
following format:
Bit Description
0 Type of access violation:
Clear if page table entry protection code did
not permit intended access
Set if POLR, P1LR, or SLR length violation
‘) 1 Page table entry reference:
Clear if specified virtual address is not
accessible
Set if associated page table entry is not
accessible
2 Intended access:
Clear if read
Set if modify
O 3 Vector alignment exception:
Set if vector element is not properly aligned in
memory’
4 Vector instruction reference of /O space
Set if vector instruction referred to an I/O
space address
2 Virtual address to which access was attempted or, on
some processors, virtual address within the page to
O which access was attempted. For access violations
that occur due to a vector alignment exception or a
vector instruction reference to 1/0 space, this virtual
address is always an address within the page to
which access was attempted.
SS$_ILLVECOP Fault llegal vector Four, as follows:
opcode.? .
1 Signal name, SS$_ILLVECOP
2 lllegal opcode that caused the exception
3 Program counter (PC) of the vector instruction that
caused the exception to be reported. (Note that
this instruction is not always that that caused the
exception.)
4 Processor status longword (PSL) at the time the
exception is reported.
Q ' Note that the VMS operating system repoits this exception with an SS$_VECALIGN fault.

2 Note that some processors report illegal vector opcodes with the SS$_OPCDEC exception.

(continued on next page)

2-29

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

Table 2-3 (Cont.) Summary of Exception Conditions

Exception Type Description Arguments
SS$_VARITH Trap Vector arithmetic Five, as follows:
tra
P 1 Signal name, SS§_VARITH.

2 Exception summary. This is a mask, the bits of which,
when set, signify the following:

Bit Meaning

0 Floating underflow

1 Floating divide by zero

2 Floating reserved operand

3 Floating overflow

5 Integer overflow

3 Vector register mask, the bits of which (0 through
15) correspond to the VAX vector registers (VO
through V15). When set, a bit indicates that an
element of the associated vector register was involved
in an operation that caused one or more of the
vector arithmetic exceptions reported in the exception
summary argument.

4 Program counter (PC) of the vector instruction that
caused the exception to be reported. (Note that this
instruction is not always the one that caused the
exception.)

5 Processor status longword (PSL) at the time the
exception is reported.

SS$_VECALIGN Fault Vector alignment Identical to the argument list for SS$_ACCVIO

exception

2-30

(continued on next page)

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

Table 2-3 (Cont.) Summary of Exception Conditions

Exception Type Description Arguments
SS$_VECDIS Fault Vector processor Three, as follows:
disabled

1 Reason for vector disabled exception. The reason
argument can have any of the following values:

SS$_NOPRIV—AN ACL on the vector capability has
denied a user mode program access to the vector
processor.

SS$_MCHECK—The vector processor has been
disabled due to the detection of a hardware error.

SS$_INSFMEM—Insufficient nonpaged dynamic
memory exists to turn the current process into a
vector consumer.

SS$_CPUNOTACT—The VAX system contains no
vector-present processor on which to schedule the
current process.

SS$_BADCONTEXT—The vector state of the mainline
routine is corrupt and cannot be restored.

SS$_EXQUOTA—The VMS operating system cannot
allocate sufficient space to save the vector state of
™, the mainline routine because the process in which the
O routine is executing has exceeded process paging file
quota.

SS$_INSFWSL—The VMS operating system cannot
allocate sufficient space to save the vector state of
the mainline routine because the working set limit of
the process in which the routine is executing is too
fow.

SS$_VASFUL—The VMS operating system cannot
, allocate sufficient space to save the vector state of
C the mainline routine because the address space (PO
space) of the process in which the routine is executing
is full.

2 Program counter (PC) of the vector instruction that
caused the exception to be reported. (Note that
this instruction is not always that that caused the
exception.)

3 Processor status longword (PSL) at the time the
exception is reported.

2.3.7 Requirements of the VAX Procedure Calling and Condition Handling
Standard for Vector Processing

This section contains excerpts from the VAX Procedure Calling Standard
that describe the requirements that procedures must follow when using
C:) the system’s vector processing resources.

Code generated by VAX vectorizing compilers adheres to the rules
described in this section. VAX MACRO code containing vector instructions
must be written to comply with these requirements.

2-31

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

2-32

Vector Register Usage

The VAX Calling Standard specifies no conventions for preserved vector
registers, vector argument registers, or vector function value return
registers. All such conventions are by agreement between the calling
and called procedures. In the absence of such an agreement, all vector
registers, including VO through V15, VLR, VCR, and VMR are scratch
registers. Among cooperating procedures, a procedure that does preserve
or otherwise manipulate the vector registers by agreement with its callers
must provide an exception handler to restore them during an unwind.

2.3.7.2 \Vector and Scalar Processor Synchronization

There are two kinds of synchronization between a scalar and vector
processor pair: memory synchronization and exception synchronization.

23.7.3 Memory Synchronization

Every procedure is responsible for synchronization of memory operations
with the calling procedure and with procedures it calls. If a procedure
executes vector loads or stores, the following must occur:

* An MSYNC instruction (a form of the MFVP instruction) must be
executed before the first vector load/store to synchronize with memory
operations issued by the caller. While an MSYNC instruction might
typically occur in the entry code sequence of a procedure, exact
placement can also depend on a variety of optimization considerations.

e An MSYNC instruction must be executed after the last vector
load/store to synchronize with memory operations issued after return.
While an MSYNC instruction might typically occur in the return code
sequence of a procedure, exact placement can also depend on a variety
of optimization considerations.

¢ An MSYNC must be executed between each vector load/store and
each standard call to other procedures to synchronize with memory
operations issued by those procedures.

That is, any procedure that executes vector loads or stores is responsible
for synchronizing with potentially conflicting memory operations in any
other procedure. However, execution of an MSYNC to ensure scalar/vector
memory synchronization can be omitted when it can be determined for the
current procedure that all possibly incomplete vector load/stores operate
only on memory that is not accessed by other procedures.

2.3.7.4 Exception Synchronization

Every procedure is responsible for ensuring that no exception can be raised
after the current frame is changed (as a result of either a CALL or RET).
If a procedure executes any vector instruction that might possibly raise an
exception, then a SYNC instruction (a form of the MFVP instruction) must
be executed prior to any subsequent CALL or RET.

However, if it can be determined that the only possible exceptions that
can occur are ensured to be reported by an MSYNC instruction that
is otherwise needed for memory synchronization, then the SYNC is
redundant and can be omitted as an optimization.

@

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

Moreover, if it can be determined that the only possible exceptions that
can occur are ensured to be reported by one or more MFVP instructions
that read the vector control registers, then the SYNC is redundant and
can be omitted as an optimization.

2.3.7.5 Synchronization Summary

Memory synchronization with the caller of a procedure that uses the
vector processor is required because there might be scalar machine
writes (to main memory) still pending at the time of entry to the called
procedure. The various forms of write-cache strategies allowed by the
VAX architecture combined with the possibly independent scalar and
vector memory access paths imply that a scalar store followed by a CALL
followed by a vector load is not safe without an intervening MSYNC.

Within a procedure that uses the vector processor, proper memory and
exception synchronization might require use of an MSYNC instruction or
a SYNC instruction, or both, prior to calling another procedure or upon
being called by another procedure. Further, for calls to other procedures,
the requirements may vary from call to call depending on details of actual
vector usage.

An MSYNC instruction (without SYNC) at procedure entry, procedure
exit, and prior to a call, should provide proper synchronization in most
cases. A SYNC instruction (without an MSYNC prior to a CALL or RET)
will sometimes be appropriate. The remaining two cases, where both or
neither MSYNC and SYNC are needed, are probably rare.

Refer to the VAX MACRO and Instruction Set Reference Manual in the
VAX Vector Architecture section for the specific rules on what exceptions
are ensured to be reported by MSYNC and other MFVP instructions.

2.3.7.6 Condition Handler Parameters and Invocation

If the VAX vector hardware or emulator option is in use, then, for
hardware detected exceptions, the vector state is implicitly saved before
any condition handler is entered and restored after the condition handler
returns. (No save/restore is required for exceptions that are initiated by
calls to LIB$SIGNAL or LIB$STOP because there can be no useful vector
state at the time of such calls in accordance with the rules for Vector
Register Usage in Section 2.3.7.1.) A condition handler can thus make use
of the system vector facilities in the same manner as mainline code.

The saved vector state is not directly available to a condition handler. A
condition handler that needs to manipulate the vector state to carry out
agreements with its callers can call the $RESTORE_VP_STATE service.
This service restores the saved state to the vector registers (whether
hardware or emulated) and cancels any subsequent restore. The vector
state can then be manipulated directly in the normal manner by means
of vector instructions. (This service is normally of interest only during
processing for an unwind condition.)

2-33

2.3.8

2.3.9

Introduction to Vector Processing
2.3 Programming in a Vector Processing Environment

O

VMS Accounting Utility (ACCOUNTING) Resource Packet Format

The VMS Accounting Utility uses the longword field ACR$L_VP_
CPUTIME in the resource packet (ACR$K_RESOURCE) to record the
vector CPU time (measured in 10-millisecond clock ticks) accrued by a
process or image.

See the VMS Accounting Utility Manual for a complete description of the
format and contents of ACCOUNTING records.

VMS Monitor Utility (MONITOR) VECTOR Class Record

As discussed in VMS Monitor Utility Manual, the VMS Monitor Utility
(MONITOR) writes binary performance data to a VAX RMS sequential (™
file known as the MONITOR recording file. Once per recording interval, o
MONITOR writes to this file a record containing data pertinent to each

currently selected class. Version 5.4 of the VMS Monitor Utility includes

the VECTOR class record, which contains data describing the time during

which vector consumers have been scheduled on a vector-present processor.

See Section 16.3 for a complete description of the MONITOR VECTOR
command and the VECTOR class. See Section 16.4 for specific information
about the VECTOR class record and format.

O

s

2-34

3 Introduction to DECdtm Services

The VMS Version 5.4 operating system includes DECdtm services, which
provide system services that demarcate and coordinate distributed
transactions. By using the two-phase commit protocol, these services
ensure consistent execution of distributed transaction on the VMS
operating system. In turn, these system services make use of underlying
logging and communication primitives necessary to enable distributed
transaction commitment.

This chapter describes how the DECdtm services coordinate distributed
transaction processing. The following sources in this manual also describe
aspects of VMS Version 5.4 support for DECdtm services:

* Chapter 15 (Log Manager Control Program Utility (LMCP))

¢ Section 16.1 (MONITOR TRANSACTION Command and
TRANSACTION class)

* Chapter 22 (new and modified system services)

e Chapter 29 (of this manual) and the VAX RMS Journaling Manual
(RMS Journaling support)

e VMS Version 5.4 Release Notes

Note: By default, processes for DECdtm services are started when a full
VMS boot is executed. Before any transactions can be started,
however, you must first use the Log Manager Control Program
Utility (LMCP) to create a transaction log file (as described in
Chapter 15).

If you do not want to run DECdtm software, you can

prevent the startup of DECdtm processes by defining the
systemwide logical name SYS$DECDTM_INHIBIT in the
SYSSMANAGER:SYLOGICALS.COM command procedure. You
can define SYS$DECDTM_INHIBIT to be any string. For example:

$ DEFINE/SYSTEM/EXEC SYS$DECDTM_ INHIBIT "yes"

See the Guide to Setting Up a VMS System for more information
about the SYLOGICALS.COM command procedure.

3.1 Characteristics of Distributed Transactions

In business terminology, a transaction is a discrete unit of work. One
example of a transaction is the purchasing of tickets from an airline
reservation system. Another example is the transferring of funds between
customer accounts using an automated teller machine (ATM). In both
examples, the processing of the transaction involves interaction with
databases.

31

Introduction to DECdtm Services
3.1 Characteristics of Distributed Transactions

3-2

Characteristically, transaction processing incorporates large, corporate-
level applications that support many users for critical business functions.
In transaction processing applications, there are usually many users
simultaneously performing predefined functions (query and update) to

a collection of shared data, generally a database. Results are usually
expected immediately.

Another characteristic of transaction processing is that it is usually
distributed. Transaction execution typically involves communication
between a client program and one or more databases that can be locally
or remotely located. This communication between client and server
might typically take place through a network of systems distributed at
various geographic locations; hence, the operation can be called distributed
transaction processing. In the example of funds transfers at an ATM, the
central system—or database—acts as a server, providing services to the
customer—or client—at the ATM.

A single transaction represents the execution of a set of procedures. A
client and the server must communicate using read and write operations
to enable the client program to perform the desired task, for example, to
perform a debit/credit operation to transfer funds in customer accounts.

Figure 3-1 shows the execution flow of a simple debit/credit application.
A user at the ATM requests a financial operation, such as a transfer of
funds from one account to another. A client program on Node A receives
this request from the ATM. The client program forwards the request to
a debit/credit program on Node B, and the debit/credit program updates
the customer accounts database. The transaction shown in this figure
is distributed because the cooperating programs are located on different
computer systems.

For transaction processing to be reliable, every required operation
involved in the execution of the transaction must be completed before
the transaction is made permanent; otherwise none of the operations are
completed. A transaction that has this characteristic, known as atomicity,
is considered an atomie transaction.

An atomic transaction must execute in its entirety or must have no effect
at all. A transaction that executes in its entirety is called committed. One
that terminates prematurely (and therefore has no effect) is called aborted.

The DECdtm services implement a commit protocol to guarantee atomic
transaction processing. This protocol, known as the two-phase commit
protocol, ensures atomicity by sequencing the commit process in such

a way as to ensure that all resources (for example, databases) will be
committed.

In the funds transfer example, it is vital that each of the customer’s
accounts is properly debited or credited and the account files updated
only after it has been acknowledged that the transfer has occurred. If

a system failure occurs while the transaction is processing, all of the
previous operations of the transaction must be nullified. This arrangement
keeps the database consistent; no operation is ever partially applied to the
database.

Introduction to DECdtm Services
3.2 Transaction Processing System Model

Figure 3—1 Sample Debit/Credit Transaction Execution

Node B Node C
i_'—"—'f ''''''''''''''''''''' _i [e [
i Client i 1 Server i
| i 1 Debit/Credit Program i
[Begin Transaction P i
i Processing [i
= =re
i /ll/’ Request Database i
Node A : Send Request : : l — |
! o !
! . Send I
s : b Result I
‘) i Print Transaction HE :
i Receipt i i
i P i
[J il [
: End Transaction : : !
I Processing i :
i i i
! T i
. ZK-1221A-GE
C
3.2 Transaction Processing System Model
In Digital’s model for transaction processing, several components work
together to execute atomic transactions.
At the end-user level, user-written application programs define the task
to be accomplished, such as query, update, and debit/credit. Application
O programs also specify how transactions are to be executed. The application
programs initiate transaction execution using calls to VMS system
services.

At the system level, the execution of the transaction depends on the
interaction of the three main transaction processing components:

¢ Resource managers
* Transaction managers

* Log managers

3.2.1 Resource Manager

A resource manager controls shared access to a set of recoverable resources

on behalf of applications programs. A resource is usually a database. The

term recoverable means that all updates to the resources on behalf of the
O transaction can be made permanent or can be undone.

A resource manager participates in the two-phase commit protocol to
commit or abort a transaction.

3-3

Introduction to DECdtm Services
3.2 Transaction Processing System Model

Resource managers provide recovery mechanisms that work together with
the DECdtm services and perform any necessary logging and recovery
operations. The most common type of resource manager is a database
system. Several Digital products can act as resource managers, including
VAX RMS Journaling, Rdb/VMS, and VAX DBMS.

The execution of a transaction can span several nodes. The root
application program can use the services of one or more resource managers
on its home node. An application can also communicate with applications
on other nodes, and these remote applications can also use other resource
managers.

3.2.2 Transaction Manager .

A transaction manager supports the services issued from application K\ J
programs to start, end, and abort transactions. A transaction manager o
coordinates the action of a distributed transaction by sending instructions

to resource managers about how to complete the transaction.

In a distributed network of transaction processing systems, each VMS
node normally contains one DECdtm object. This object contains the
transaction manager for transactions initiated from that node. The
transaction manager maintains a list of participants in a transaction.
In the execution of a transaction, participants may include: (\

¢ Resource managers on a local node, spanning one more or processes

¢ Transaction managers on other nodes within a network, which may
also have associated resource manager and transaction manager
participants

In this way, a hierarchy, or “tree,” of resource managers and transaction
managers can be established within the execution of a single transaction.

The node on which a transaction is created is the “root” of the transaction.

This is the coordinating or home node. Nodes containing the participating C
transaction managers and resource managers branch off from the root J)
node. On each node, a transaction manager communicates only with its

local resource managers, the transaction managers that are its immediate
subordinates and the transaction manager that is its superior. A

subordinate node is also referred to as a child node. A superior transaction
manager is also referred to as a parent transaction manager.

In Figure 3-2, Node A is the coordinating node. It contains the parent
transaction manager (TM) and the local resource manager (RM). The
parent transaction manager coordinates the transaction started by

the application program (AP) Node A with participating transaction
managers and resource managers on other nodes. Nodes B, C, and D are
all subordinates of Node A.

C

3-4

Introduction to DECdtm Services
3.2 Transaction Processing System Model

Figure 3-2 Participants in a Distributed Transaction Example

Coordinator

ZK-1870A-GE

3.23 Log Manager

A log manager provides the mechanism for storing a permanent record
of the execution of distributed transactions in log files. Each recoverable
resource manager implements its own log manager component, which
consists of a set of logging services. Logging services are also provided
by the DECdtm services. During normal operation, resource managers

O and transaction managers write log files containing records of transaction
state information. After recovering from a failure, a resource manager
or transaction manager can read the log file to determine the state of a
transaction at the time of failure.

3-5

3.3

Introduction to DECdtm Services
3.3 Overview of Two-Phase Commit Protocol

Overview of Two-Phase Commit Protocol

3-6

Specific transaction management system services called from application
programs mark the start and end of a transaction. The DECdtm system
services include:

* Start Transaction ($START _TRANS)

¢ Start Transaction and Wait ($START TRANSW)
¢ End Transaction ($END_TRANS)

* End Transaction and Wait (SEND_TRANSW)

* Abort Transaction (SABORT_TRANS)

* Abort Transaction and Wait ($ABORT_TRANSW)

The transaction manager component of the DECdtm services coordinates
the execution of these system services. See Chapter 22 for more detailed
descriptions of the DECdtm system services new for Version 5.4 of the
VMS operating system.

The processing of a distributed transaction begins when an application
calls the $START_TRANS or $START_TRANSW service. In response,
the transaction manager generates a unique transaction identifier (TID)
for the transaction so that it can keep track of the transaction. The
transaction manager uses the TID to identify all actions performed by
resource managers and transaction managers on behalf of the transaction.

Each resource manager is responsible for providing recovery capabilities
for its own resources by performing transaction logging. The transaction
manager is responsible for notifying all resource managers involved in a
transaction of all relevant transaction state transitions. The transaction
manager keeps track of the state of each transaction in case a system or
process fails before the transaction completes.

The transaction manager maintains a list of resource managers and
transaction managers that participate in a transaction’s execution. The
transaction manager uses this list of participants to execute the two-phase
commit protocol. During the execution of this protocol, each participating
transaction manager writes transaction information to a log file. A log file
contains a permanent record of transaction states. By having access to a
log file, a transaction manager can resume the execution of the two-phase
commit protocol after recovering from a system failure.

For a complete description of transaction log files, see Chapter 15.

Each participating resource manager supports atomic transactions on

its resources. To do this, the resource manager notifies the transaction
manager as soon as that resource manager is first accessed by the
application. A resource manager logs enough information to allow it to
undo or redo operations it performed on behalf of a transaction. Similar to
a transaction manager, a resource manager logs transaction state changes
to a log file.

N
.

O

O

C

Introduction to DECdtm Services
3.3 Overview of Two-Phase Commit Protocol

The processing of a transaction completes when one of the following calls
is made:

¢ Commit—Using $END_TRANS or $END_TRANSW
* Planned abort—Using $ABORT_TRANS or $ABORT_TRANSW

(See Chapter 22 for more detailed descriptions of the DECdtm system
services introduced in Version 5.4 of the VMS operating system.)

Upon receiving an End Transaction call, the DECdtm services implement
the two-phase commit protocol to inform all participants how to proceed
with the execution of the transaction.

The first phase of the two-phase commit protocol is the prepare phase.
During this phase, the transaction manager uses a polling mechanism

to determine if the participants can complete all the steps involved in a
given transaction and can therefore commit the transaction. A participant
that has successfully prepared casts a “yes” vote. If an error occurs during
the polling that prevents a participant from responding—for example, if

a resource manager fails or if a network link goes down—a “no” vote is
assumed.

A “yes” vote indicates that the participating resource manager can either
commit or abort the operations performed within this transaction, even if
a failure occurs.

If all of the participants declare that they can commit by voting “yes,”
the transaction manager makes a decision to commit and proceeds to the
second phase, known as the commit phase.

The transaction manager now orders the participants to commit the
transaction. At this point all participants complete their transaction
operations.

If any of the participants fails to prepare successfully, the transaction
is aborted. The transaction manager orders all remaining participants
to abort the transaction and roll back their transaction processing
work. Thus, none of the actions of the distributed transaction are made
permanent.

Managing DECdtm Services Using VMS Utilities

The VMS operating system provides the following utilities to manage the
information provided by the DECdtm services:

* The Log Manager Control Program Utility (LMCP) is used to create
and manage log files that are used by transaction managers. See
Chapter 15 for a complete description.

¢ The VMS Monitor Utility can be used to monitor the status of
transactions executing on the system. See Chapter 16 for more
information.

3-7

Introduction to DECdtm Services
3.5 New TRANSACTION_ID Data Type for Programming Routines

3.5 New TRANSACTION_ID Data Type for Programming Routines

To support DECdtm programming routines, there is a new VMS data type,
or structure, for low- and high-level languages. The transaction_id data
type is an octaword that stores a unique transaction identifier.

3-8

U

i

O

Part 2: General User Features

This part contains the following chapters:

+ Chapter 4, DCL Commands and Lexical Functions

» Chapter 5, EVE Editor

« Chapter 6, System Messages

» Chapter 7, DECwindows User and Desktop Applications

C

DCL Commands and Lexical Functions

This chapter includes the following information:

Table 4-1 contains a summary of DCL commands that are new or
enhanced in the VMS Version 5.4 operating system.

Table 4-2 contains a summary of the lexical functions that are new or
enhanced in the VMS Version 5.4 operating system.

Refer to the revised VMS DCL Dictionary for complete descriptions of all
new and enhanced VMS Version 5.4 DCL commands and lexical functions.

Table 4-1 Summary of New and Enhanced DCL Commands

Command Enhancements

BACKUP Now includes new /MEDIA_FORMAT qualifier, which controls data compaction on
a TA9OE tape drive.

FONT New command that compiles fonts for use by the DECwindows server and
converts an ASCII bitmap distribution format (BDF) into binary server natural form
(SNF).

INITIALIZE Now includes new /MEDIA_FORMAT qualifier, which controls data compaction on
a TA90E tape drive.

MOUNT Now includes new /MEDIA_FORMAT qualifier, which controls data compaction on
a TAQOE tape drive. .

PSWRAP New command that invokes the PSWRAP translator, which converts procedures
written in PostScript to callable routines.

SET ACL Now includes the new CAPABILITY keyword for the /OBJECT_TYPE qualifier,

which lets you specify a system capability such as the ability to process vector
instructions.

Also includes the foilowing new qualifiers:

/BACKUP Modifies the time value from /SINCE or /BEFORE to
select files according to their most recent BACKUP

/EXPIRED Modifies the time value from /SINCE or /BEFORE to
select files according to their expiration date

/MODIFIED Modifies the time value from /SINCE or /BEFORE to

select files according to their last modification date

(continued on next page)

4-1

DCL Commands and Lexical Functions

Table 4-1 (Cont.) Summary of New and Enhanced DCL Commands

Command Enhancements

SET HOST/DTE Now includes new qualifiers and subcommands that provide a greater ability to
control and customize the SET HOST/DTE operation. Specific enhancements
include the following:

+ Using DTEPAD, you can now control and customize the configuration of a
connection to a remote system through a terminal line.

» New qualifiers let you select all configurational characteristics, such as XON
/XOFF flow control, the maximum number of buffers, read, delay, and parity.

* A new interactive command mode lets you configure the SET HOST/DTE
session while the session is in progress.

+ The following new subcommands help you effectively control the SET HOST
/DTE operation:

CLEAR—Disconnects your local system from DTEPAD
EXIT—Returns the session to DCL emulation mode
QUIT—Disconnects your local system from DTEPAD
SAVE—Saves the current configuration settings

SEND BREAK—Sends a break to the remote system

SET DTE—Modifies characteristics of DTEPAD

SHOW DTE—Displays the configurable characteristics of DTEPAD
SPAWN—Creates a subprocess of your local process

See the VMS DCL Dictionary for complete information about the SET HOST/DTE

command. .

SET MAGTAPE Now includes new /MEDIA_FORMAT qualifier, which controls data compaction on
a TASOE tape drive.

SET SYMBOL Now includes the following new qualifiers to control symbol scoping: /ALL,
/GENERAL, and /VERB.

SET TERMINAL Now includes a new value for the /DEC_CRT qualifier that sets characteristics for
the VT400 family of terminals.

SHOW ACL Now includes the new CAPABILITY keyword for the /OBJECT_TYPE qualifier,
which lets you display a system capability such as the ability to process vector
instructions.

SHOW CPU New command that displays the current state of the processors in a VMS
multiprocessing system.

SHOW ZONE New command that displays the current state of a VAXft 3000 system.

START/CPU New command that starts a secondary processor in a VMS multiprocessing
system.

START/ZONE New command that adds a zone to a running VAXft 3000 system.

STOP/CPU New command that stops a secondary processor in a VMS multiprocessing
system.

STOP/ZONE New command that removes a zone from a running VAXft 3000 system.

VIEW Now accepts new PS input format, which lets you use the CDA Viewer to view
PostScript files (which use the file extension .PS). See Section 31.4.1 for additional
information.

4-2

@

O

DCL Commands and Lexical Functions

Table 4-2 Summary of New and Enhanced Lexical Functions

Lexical Function

Enhancements

F$CSID
F$DEVICE
FSENVIRONMENT

F$GETDVI

FSGETJPI

F$GETSYI

F$TYPE

New function that returns the cluster identification numbers for nodes in a cluster.
New function that returns the device names of devices on the system.
Now includes the following new item codes:

DISIMAGE Reports whether you are logged into an account that
allows the RUN, MCR, or foreign commands.

RESTRICTED Reports whether you are logged into a restricted account.

VERB_SCOPE Reports the current verb scoping state.

Now includes the following new item codes:

Volume shadowing Provide the volume-shadowing status of a device.

item codes

TT_DECCRT4 Reports whether a terminal is a Digital CRT4 terminal.

Includes the following new item codes:

Vector item codes Provide information on the process’s use of vector
processing.

Process rights item Provide information about the process'’s rights.

codes

Now includes the new parameter cluster-id, which specifies the cluster node for
which information is to be returned.

Also includes the following new item codes:

ACTIVECPU_CNT Returns the number of CPUs active in an SMP system.

AVAILCPU_CNT Returns the number of CPUs recognized by an SMP
system.

SYSTEM_RIGHTS Contents of the system rights list.

Vector item codes New item codes provide information about the vector

processors in the system.
Now includes the following new return values:

PROCESS_CONTEXT Indicates whether a symbol was created by

the F$PID lexical function.
CLUSTER_SYSTEM_ Indicates whether a symbol was created by
CONTEXT the F$CSID lexical function.

4-3

O

O

O

C

S

5.1

EVE Editor

This chapter describes the EVE Version 2.6 new features that are included
in Version 5.4 of the VMS operating system. See the revised VMS EVE

Reference Manual for more detailed information.

Box Editing

The new box editing feature lets you edit text using rectangular areas, or
boxes, as well as standard, linear ranges. For example, you can select
a box containing a list or columns in a table, and then cut and paste or
perform some other editing operation on the box. Table 5-1 lists the new

commands for box editing.

Table 5-1 EVE Box Editing Commands

Command Usage

BOX COPY Copies a box of text, without removing it, so you can
paste it elsewhere.

BOX CUT Cuts a box of text so you can paste it elsewhere,

BOX CUT INSERT

BOX CUT OVERSTRIKE

BOX PASTE

BOX PASTE INSERT

BOX PASTE OVERSTRIKE

BOX SELECT

RESTORE BOX SELECTION

SET BOX NOPAD

SET BOX NOSELECT

usually padding the area with spaces to keep the
column alignment of text to the right of the box.

Cuts a box, making text to the right of the box
"collapse" to the left, closing the gap.

Cuts a box, padding the area with spaces to keep
the column alignment of text to the right of the box.

Pastes a box of text you copied or cut, usually,
overwriting existing text.

Pastes a box, pushing existing text to the right.
Pastes a box, overwriting existing text.

Selects a box of text. Typically, you start at the

upper left corner of the box and move the cursor to
where you want the lower right corner.

Puts back (undeletes) a box erased with pending
delete, usually overwriting existing text.

Disables padding and overstriking for box editing
unless the mode of the buffer is overstrike.

(Default.) Disables box selection, cutting, and
pasting. Commands such as SELECT, COPY,
REMOVE, and so on, use standard, linear ranges.
To edit boxes, use BOX commands.

(continued on next page)

5-1

EVE Editor
5.1 Box Editing

Table 5-1 (Cont.) EVE Box Editing Commands

Command Usage

SET BOX PAD (Default.) Enables automatic padding and
overstriking for box editing, regardless of the mode
of the buffer.

SET BOX SELECT Enables box selection, making commands such
as SELECT, REMOVE, and INSERT HERE the
same as the corresponding BOX commands, without
having to redefine keys.

5.2 New Command: CONVERT TABS

This command replaces tab characters with the appropriate number of
spaces. This is useful if your file will be printed or displayed on devices
with tab stops different from your settings in EVE,

5.3 New Qualifiers: /WORK and /INTERFACE

The /WORK qualifier (used with the EDIT/TPU command) determines the
work file that is used to swap memory, allowing you to edit very large files.

The /INTERFACE qualifier, which you use with the EDIT/TPU command
to specify either the character-cell or DECwindows interface, has been
added for compatibility with other DECwindows applications. It is
virtually the same as the /DISPLAY qualifier.

5.4 Additional Sources of New EVE Information

5-2

In addition to reading the revised VMS EVE Reference Manual to learn
more about the new and changed features, you should also read the
section about EDIT/TPU in the VMS DCL Dictionary (particularly the
descriptions of the /JOURNAL and /RECOVER qualifiers) and review the
following online help topics within EVE:

Attributes Names For Keys
Defaults New Features
Journal Files Pending Delete
List Of Topics Ranges And Boxes

O

6

System Messages

This chapter lists the VMS facilities that have new or modified system
messages in Version 5.4 of the VMS operating system. There is also
information about installing and accessing an online Help version of the
VMS System Messages and Recovery Procedures Reference Manual.

6.1

C

VMS Facilities with New or Modified System Messages

The following VMS facilities have new or modified system messages in
Version 5.4 of the VMS operating system. Refer to the VMS System

Messages and Recovery Procedures Reference Manual for additional
information.

C I

ANALDISK, Analyze/Disk_Structure Utility
BACKUP, Backup Utility

BUGCHECK, System Bugcheck

CDA, Compound Document Architecture
CLI, Command Language Interpreter (DCL)
DISMOUNT, DISMOUNT Command
FDL, Create/FDL Utility

FDL, Edit/FDL Utility

JBC, Job Controller

LMCP, Log Manager Control Program
MOUNT, Mount Utility

MTH, Mathematics Facility

NCP, Network Control Program

PTD, Pseudoterminal

REM, Set Host Facility

RMS, VMS Record Management Services
SDA, System Dump Analyzer

SET, SET Facility

SET PASSWORD Facility

SYSBOOT, System Bootstrap Facility
SYSGEN, System Generation Facility
SYSTEM, VMS System Services

UETP, User Environment Test Package

6-1

System Messages
6.1 VMS Facilities with New or Modified System Messages

¢ VAXTPU, VAX Text Processing Utility

¢ Volume Processing Facility

6.2 System Messages Available from Online Help

Note:

With Version 5.4 of the VMS operating system, you can now install and
access an optional online Help version of the VMS System Messages and
Recovery Procedures Reference Manual. Because this is a large file, it is
not included as part of the default root library, SYSSHELP:HELPLIB.HLB.
You can access the file, named SYS$HELP:SYSMSGHELP.HLB, as follows:

¢ Use the /[LIBRARY qualifier with the HELP command. For example:
$ HELP/LIBRARY=SYSSHELP:SYSMSGHELP.HLB ERRORS ACCVIO

* Define a logical name that instructs the Help Facility to search the
new help library when it it does not find the specified topic in the VMS
root help library. For example:

$ DEFINE HLPSLIBRARY DISKS$2:[QUAIL]SYSMSGHELP
$ HELP ERRORS DISMAL

In this example, the DEFINE statement creates a logical name for the
help library that the Help Facility is to search after it has searched
the root library, SYS$HELP:HELPLIB.HLB.

The Help Facility first searches the root library for ERRORS. O
When it does not find error,! it then searches the library defined '
by HLP$LIBRARY until it finds ERRORS and displays the appropriate
information. For information on defining logical names and search

patterns for the Help facility, see the HELP COMMAND in the VMS

DCL Dictionary.

* Using the VMS Librarian Utility, you can extract the ERRORS module
from SYSMSGHELP.HLB and insert it into the default root help
library HELPLIB.HLB. This allows direct access without using extra \
HELP qualifiers or logical names. For more information, see the VMS @
Librarian Utility Manual.

The system messages help library is in compressed format. Decompressing
the library gives you faster access to it but requires an additional 1600
blocks of disk space. To decompress the library, enter a command similar
to the following:

$ LIBRARY/DATA=EXPAND/OUTPUT=device: [directory] SYSMSGHELP.HLB -
S device: [directory] SYSMSGHELP.HLB

In this example, device is the name of the device where the file is located,
and directory is the name of the directory.

The system messages help library is not decompressed when you
execute the LIBDECOMP.COM procedure described in the VMS
Version 5.4 Upgrade and Installation Manual.

! Previous versions of HELPLIB.HLB provided information about system messages format under the name
ERROR. This information is now named FORMAT_OF_ERROR.

6-2

C

System Messages
6.2 System Messages Available from Online Help

You can use the VMS tailoring utility (VMSTAILOR) to add or delete the

system messages help library. Deleting this library does not affect the
other help libraries.

6-3

O

O

7

DECwindows User and Desktop Applications

This chapter describes new features of interest to DECwindows users.
These features include enhancements to the Session Manager, the CDA
Viewer, Calculator, Clock, and Mail.

Enhancements to the Session Manager include the addition of new
languages to the Customize language dialog box and the ability to
change your target screen, as described in Section 7.1.1 and Section 7.1.2

7.1 Session Manager
respectively.
7.1.1 Setting Another Session Language

The following languages have been added to the Customize Language
dialog box in the Session Manager:

O I

C ,

Australian
Austrian

Belgian Dutch
Belgian French
Danish

Fiji

Finnish

Hebrew

New Zealand
Papua New Guinea

Portuguese

For more information about setting another session language, see the
Version 5.3 edition of the VMS DECwindows User’s Guide.

7.1.2

Changing Your Target Screen

When you run an application or choose Print Screen on a workstation that
supports more than one screen display, by default DECwindows displays a
dialog box asking you which screen you want to use (see Figure 7-1).

C

7-1

7.2

DECwindows User and Desktop Applications
7.1 Session Manager

Figure 7-1 DECwindows Screen Number Dialog Box

Use Screen Number:

@0 O1

Cancel Operation

ZK-1959A-GE

If you want to use the same screen every time you run an application or
use PrintScreen, you can disable the screen number prompt and choose
your target screen. To disable the screen number prompt or change
your target screen, choose Screen Number... from the Session Manager’s
Customize menu. The Session Manager displays the Customize Screen
Number dialog box (see Figure 7-2).

Figure 7-2 DECwindows Screen Number Dialog Box

Customize Screen Number

Application Display
(] Prompt For Screen Number
Display On Screen: Apply

@0 O1

[
o

Print Screen
[C] Prompt For Screen Number

Use Screen Number:

@0 Ot

ZK-1958A-GE

When you choose your target screen in the Customize Screen Number
dialog box, DECwindows will run applications (or PrintScreen) on the
screen you designated. If you click on the Prompt for Screen buttons,
DECwindows will not display the screen number dialog box.

CDA Viewer

7-2

The DECwindows CDA Viewer now lets you view PostScript files.
Section 7.2.1 describes how to view a PostScript file and Section 7.2.2
describes the new processing options available.

TN
.

DECwindows User and Desktop Applications
7.2 CDA Viewer

@

7.2.1 Viewing a PostScript File

To view a PostScript file, select the CDA Viewer menu item from the
FileView Applications menu. In the Open window, click on PS in the File
Format box and then select the PostScript file you want to view.

From a DCL window, enter the VIEW command in the following format to
open a PostScript document for viewing:

VIEW filename.PS /FORMAT=PS /INTERFACE=DECWINDOWS

When you invoke the CDA Viewer from the DCL prompt, you do not need
to specify processing options for the PostScript files.

PostScript file viewing is supported only in the DECwindows CDA Viewer

O and only when running to displays with servers containing the Display
PostScript Extension. The CDA Viewer does not provide support for
PostScript files on character cell terminals.

When viewing a PostSeript file, after you select or turn to a particular
page, you can click on the CDA Viewer Cancel button if you decide not to
view the page while it is being processed. The CDA Viewer immediately
stops processing that page.

O 7.2.2 New Processing Options for Viewing PostScript Files

In addition to the Default Paper Size option, new processing options
specific to viewing PostSeript files are available in the Paper Size dialog
box. The additional PostScript options are highlighted, unless you already
chose PS as the file format to display.

These options are valid only for viewing PostScript files and are ignored
for all other file formats:

¢ Orientation radio box

O The Orientation radio box lets you select the orientation for displaying
PostScript files. By default, the CDA Viewer displays files in the same
portrait or landscape mode in which they were created. You can use
the Orientation radio box to select different orientations to view files
in reverse landscape mode or upside down.

* Scale Factor option

The Scale Factor option lets you scale the page display size of your
PostScript file. The number you select indicates whether the CDA
Viewer will shrink or enlarge the page display. If the scale factor is
less than 1.0, the page display will shrink. If the number is greater
than 1.0, the page display will expand. You can specify a scale factor
in the range of 0.1 to 4.0 times the size of the original page display. By
default, a typical page display has a scale factor of 1.0.

* Use Comments toggle button

C} The Use Comments option specifies that the CDA Viewer should
interpret File structure comments that often appear in PostScript files.
This enables the CDA Viewer to detect the location of page breaks in a
PostScript file, for example.

7-3

DECwindows User and Desktop Applications

7.2 CDA Viewer

7-4

The Use Comments option is enabled by default. This is indicated by
the highlighted Use Comments toggle button.

You can disable the Use Comments option by clicking on it before
opening your PostScript file. This is recommended in instances where
the PostScript file contains comments that are not correct, causing the
CDA Viewer to either display the PostScript file incorrectly or generate
an error message. In most cases, disabling the Use Comments option
and reopening the file corrects the problem.

Use Bitmap Widths toggle button

The Use Bitmap Widths option adjusts the display of your PostScript
file for improved viewing on the screen. By default, a printed
PostScript file has a finer resolution, or more dots per inch, than a
PostScript file displayed on a screen. If you try to view the printed
format of a PostScript file on line, the page layout will be the same,
but the text may be dense and difficult to read.

To clarify your PostScript file for on line viewing, you can specify
the Use Bitmap Widths option so that the CDA Viewer will use
spacing formulas designed for bitmaps (screen images) instead of
those designed for print.

The Use Bitmap Widths option is disabled by default. If you select
the Use Bitmap Widths option, the next time you open a PostScript
file, the CDA Viewer will use bitmap widths to display your file. Text
characters will appear well spaced and easy to read. However, the
file may look slightly different on screen than it would when printed.
Columns may not be aligned precisely or a paragraph formatted for
right justification may appear instead with a ragged right margin.

Use Fake Trays toggle button

The Use Fake Trays option lets you view a PostScript file that contains
tray size directives. Tray size directives are instructions that tell the
printer what paper tray size to use. These directives, however, are
specific to certain printers (such as the LPS40) and are not part of the
Display PostScript language.

By default, the CDA Viewer ignores tray size directives if you try to
display a PostScript file that contains them. To override that default
behavior and view tray size directives in a PostScript file (to identify
occurrences of nonstandard PostScript, for example), click on the Use
Fake Trays option and reopen the file.

Watch Progress toggle button

The Watch Progress option lets you view a PostScript file while it is
being processed for display in the CDA Viewer window. You can view
a page as it is being processed, rather than waiting to view the entire
page after it has been processed.

C

DECwindows User and Desktop Applications
7.3 Calculator

7.3 Calculator

Calculator now has two additional modes: hexadecimal and octal. When
you first start the Calculator, it is in decimal mode. A new Mode menu

contains Hexadecimal and Octal menu entries for changing modes. The
keyboard display and functions change according to the mode.

7.4 Clock

C

Clock now has a menu bar with File, Customize, and Help menus for
interacting with Clock. The menu bar provides an alternative to the
previous method of pressing MB2 while pointing to the Clock display.

The only menu item under File is Quit. Choose Quit to exit from Clock.

The Customize menu lets you change the Clock display. The Customize
Menu has three menu items. The menu items correspond to the Settings...,
Save Settings, and Use System Settings previously available on a pop-up
menu. Choosing the Settings... menu item displays the Clock Settings
dialog box. The only change to the dialog box is the addition of a toggle
button for Menu Bar. By default, the Menu Bar button is shaded and the
menu bar is displayed. If you do not want the menu bar displayed, click
on the Menu Bar button.

Help is now available directly as a menu on the menu bar, rather than
from a pop-up dialog box.

7.5 Mail: Displaying PostScript Files

C

Mail can now display PostScript files, provided the files you send or receive
contain only PostScript language. A PostScript file always begins with a
percent sign and an exclamation point (%!). If any other text precedes the
%!, Mail cannot display the file. For example, when mail is forwarded,
additional text (in the form of extra mail headers) is often inserted at

the beginning of the file. Because this additional text precedes the %!,
Mail cannot display the PostScript file correctly. To avoid this problem,
use an editor to remove all headers before you forward a mail message in
PostScript format. Similarly, if you receive a PostScript file that does not
display properly, use an editor to remove all headers (or any other text
that precedes the %!), and forward the file to yourself. The file should then
display properly.

7-5

Part 3: System Management Features

This part contains the following chapters:

Chapter 8, AUTOGEN Command Procedure
Chapter 9, User Environment Test Package (UETP)
Chapter 10, SYSMAN Utility

Chapter 11, VAXcluster Management

Chapter 12, System Generation Utility (SYSGEN)
Chapter 13, Error Log Utility (ERROR LOG)
Chapter 14, System Security

Chapter 15, Log Manager Control Program Utility (LMCP)
Chapter 16, Monitor Utility (MONITOR)

Chapter 17, Network Control Program Utility (NCP)
Chapter 18, VMS Volume Shadowing Phase

8 AUTOGEN Command Procedure

This chapter describes changes to the AUTOGEN command procedure in
Version 5.4 of the VMS operating system.

8.1 Parameter Name Validation

When AUTOGEN reads a parameter file such as MODPARAMS.DAT, it
now checks to determine if the parameter names specified in the file are

O valid. If a parameter name is invalid, a warning message is written to
AGEN$PARAMS.REPORT (a new file described further in Section 8.2).
The following is an example of this warning message:

** WARNING ** - Invalid parameter name: LPRCOUNT
The following record is suspect:
LPRCOUNT = 34

AUTOGEN checks only the parameter name. It does not check the validity
of the value specified for the parameter.

O If a parameter name is invalid, the line is not ignored. AUTOGEN
J attempts to use the specified value.

A parameter name is not checked if it is specified in a line that contains
a DCL expression other than the symbol assignment (=). For example,
AUTOGEN does not check the validity of a parameter name specified in
a line with a DCL IF statement. Instead, AUTOGEN writes a warning
message to AGEN$PARAMS.REPORT. The following is an example of this

message:
P N ** WARNING ** - DCL command detected
) . Parameter validation turned off for:
IF WINDOW_SYSTEM = 1 THEN NPAGEDYN = 250000

8.2 AGENS$FEEDBACK.REPORT Replaced by New File

The file SYS$SYSTEM:AGEN$SFEEDBACK.REPORT has been replaced
by a new file called SYS$SYSTEM:AGEN$PARAMS.REPORT. This

new file includes all of the information previously contained in
AGEN$FEEDBACK.REPORT, as well as information about the non-
feedback parameters and additional messages. Many of the warning
and informational messages that AUTOGEN previously displayed on the
screen are now written to AGEN$SPARAMS.REPORT.

8-1

AUTOGEN Command Procedure
8.2 AGENSFEEDBACK.REPORT Replaced by New File

For example, when AUTOGEN finds multiple MIN_, MAX_, or ADD_
values for a single parameter, AUTOGEN writes a warning message to
AGENS$PARAMS.REPORT. The warning message includes the parameter
name, the value being used for the MIN_, MAX_, or ADD_ value, and
the value being superseded. The following are examples of this type of
message:

** WARNING ** - Multiple ADD records for ADD_LRPCOUNT found.
VMS value (300) combining with MODPARAMS value (400)
Value used is 700

** WARNING ** - Multiple MIN values found for MIN_LRPCOUNTV.
Using VMS value (1000) which is superseding MODPARAMS value (800)

** WARNING ** - Multiple MAX values found for MAX SWAPFILE2 SIZE.
Using MODPARAMS value (1000) which is superseding VMS value (1200)

When AUTOGEN uses feedback information to calculate the value for a
new parameter, this information is written to AGEN$PARAMS.REPORT.
The following is an example of this type of message:

MAXPROCESSCNT parameter information:
Feedback information.
01d value was 41. New value is 50
Maximum Observed Processes: 35

When an AUTOGEN calculation is overridden by a value specified in a
parameter file, AUTOGEN writes a message to AGEN$PARAMS.REPORT.
This message includes the new parameter value and the reason why the
parameter was overridden. AUTOGEN will write this message for any
parameter value that overrides AUTOGEN’s calculations, whether the
value is supplied by the system manager or by Digital. The following is an
example of this type of message:

LONGWAIT parameter information:

Override Information - parameter calculation has been overridden.
The calculated value was 30. The new value is 10.
LONGWAIT has been disabled by a hard-coded value of 10.

8.3 MODPARAMS.DAT Includes External Parameter Files

8-2

Note:

To aid in cluster management, AUTOGEN can now read external
parameter files specified within MODPARAMS.DAT. This feature allows
system managers to maintain both clusterwide and system-specific
versions of AUTOGEN parameters.

To include a parameter file, place the following command in
MODPARAMS.DAT or in any subsequent parameter file:

AGENSINCLUDE PARAMS full-directory-specification:filename

If an include statement is the first line in MODPARAMS.DAT,
AUTOGEN attempts to resolve all subsequent parameter settings.
For example, if AUTOGEN finds two MIN_ statements for the same
parameter, it uses the higher value. If the statements cannot be
resolved, AUTOGEN uses the parameter setting specified after the
include file.

O

AUTOGEN Command Procedure
8.3 MODPARAMS.DAT Includes External Parameter Files

The following is an example of a MODPARAMS.DAT that includes an
external parameter file:

! include system wide parameter settings

1

AGENSINCLUDE_ PARAMS SYS$COMMON: [SYSMGR]COMMON CI_NODE_MODPARAMS.DAT

MIN LRPCOUNT = 45
DUMPSTYLE = O

This example reads the parameter file named
SYS$COMMON:[SYSMGRICOMMON_CI_NODE_MODPARAMS.DAT
before reading the parameters specified after the include statement in
MODPARAMS.DAT. If the included file in this example specified the
parameter setting DUMPSTYLE = 1, AUTOGEN would override this
setting with the statement DUMPSTYLE = 0, which is specified after the
include statement in MODPARAMS.DAT.

The format of all included parameter files should be the same as
MODPARAMS.DAT. For information on MODPARAMS.DAT, see the
description of AUTOGEN in Guide to Setting Up a VMS System.

O 8.4 MIN_, MAX_, and ADD_ Values Allowed for Page and Swap Files

Note:

You can now control the size of page and swap files by specifying MIN_,
MAX_, and ADD_ values in a parameter file. The syntax for specifying
MIN_, MAX , and ADD_ values is identical to that used with other
parameters.

For example, you can control the size of general page and swap files by
including one or more of the following lines in a parameter file:

PAGEFILE = 20000

ADD PAGEFILE = 5000
MIN_SWAPFILE = 1500
MAX SWAPFILE = 4000

You can also specify the sizes of individual page and swap files (including
secondary files) by including one or more of the following lines in a
parameter file:

SWAPFILEl SIZE = 2000

ADD PAGEFILEl SIZE = 2000
MIN PAGEFILE2 SIZE = 3000
MAX SWAPFILE3 SIZE = 3000

You cannot specify a MIN_, MAX , or ADD_ value for both a general
page or swap file and a specific page or swap file.

8-3

AUTOGEN Command Procedure
8.5 New Feedback Parameters

8.5 New Feedback Parameters

The existing parameters LRPCOUNT and LNMSHASHTBL are now
feedback parameters. This means that AUTOGEN can set these
parameters using data collected in AUTOGEN feedback mode. You
should remove any values for LRPCOUNT and LNMSHASHTBL that are
specified in MODPARAMS.DAT, including MIN_, MAX_ and ADD_ values,
so that AUTOGEN can set these parameters using feedback information.

8.6 Logical Names Defined by AUTOGEN

To aid in system management, AUTOGEN defines three process logical
names to indicate how AUTOGEN was last run. These logical names
are assigned a character string value each time AUTOGEN is run on a
system. The following table lists and describes the logical names:

Logical Name Description

AGEN$P1 The starting phase of AUTOGEN, for example, SAVPARAMS.

AGENS$P2 The end phase of AUTOGEN, for example, TESTFILES. If an error
occurred which caused AUTOGEN to abort, then "_E" is appended
to the phase name, for example, GENPARAMS_E.

AGENS$P3 The mode of execution, that is, either FEEDBACK or NOFEEDBACK.

8.7 New Technique for Running AUTOGEN in Batch Mode

8-4

As of Version 5.2-1 of the VMS operating system, Digital recommends

a new technique for running AUTOGEN. This technique automates
AUTOGEN feedback, allowing the system manager to receive reports
from multiple systems on a regular basis. To use this technique, create a
batch-oriented procedure which runs AUTOGEN in two stages. A sample
command procedure is shown in Example 8-1.

The first stage of the command procedure runs AUTOGEN at peak
times to collect data on realistic system loads. The following command
accomplishes this task:

$ @SYSSUPDATE:AUTOGEN SAVPARAMS SAVPARAMS FEEDBACK
Executing this command does not affect the performance of the system.

The second stage of the command procedure runs AUTOGEN again during
off-peak hours to interpret the data collected in the first stage. The
following command accomplishes this task:

$ Q@SYSSUPDATE:AUTOGEN GETDATA TESTFILES FEEDBACK

The procedure sends the resulting report, contained in the file
AGEN$PARAMS.REPORT, to the SYSTEM account using the following
MAIL command:

$ MAIL/SUBJECT="AUTOGEN FEEDBACK REPORT FOR system-name" -
SYS$SYSTEM:AGENSPARAMS . REPORT SYSTEM

AUTOGEN Command Procedure
8.7 New Technique for Running AUTOGEN in Batch Mode

Review this report on a regular basis to see whether the load on a system
has changed. If AUTOGEN’s calculations are different from the current
values, correct the tuning by executing AUTOGEN with one of two
commands:

e If the system can be shut down and rebooted immediately, execute the
following command:

$ (@SYSSUPDATE:AUTOGEN GETDATA REBOOT FEEDBACK

e If the system cannot be shut down and rebooted immediately, execute
the following command to reset the system parameters:

$ (@SYSSUPDATE:AUTOGEN GETDATA SETPARAMS FEEDBACK

The new parameters will take effect the next time the system boots.

The sample command procedure shown in Example 8-1 will run
AUTOGEN in the new technique described. Use this procedure only

as an example; create a similar command procedure as necessary to meet
your requirements.

Example 8-1 Sample AUTOGEN Command Procedure

BEGINS: ! 44++++++++ AGEN_BATCH.COM ++++++++++
on warning then goto error$
on error then goto errors$
on severe_error then goto errors$
on control y then goto errors$

Setup process

$

S

$

$

$

$

$

$

$! Set process information

$ set process/priv=all/name="AUTOGEN Batch"

$! Keep log files to a reasonable amount

$ purge/keep=5 AGEN Batch.log

$ time = fStime () ! Fetch current time

$ hour = fSinteger (fScvtime (time,, "hour")) ! Get hour

$ today = fScvtime (time,, "WEEKDAY") ! Get Day of the week

$ if f$integer (fScvtime(time,, "minute")) .ge. 30 then hour = hour + 1
$
$
$
$
S
$
$
3
$

if hour .le. 2
then
next_time = "today+0-14"
gosub submit$! Resubmit yourself
set noon

(continued on next page)

8-5

AUTOGEN Command Procedure

8.7 New Technique for Running AUTOGEN in Batch Mode

Example 8—1 (Cont.) Sample AUTOGEN Command Procedure

St

S Run AUTOGEN to setparams using the parameter values collected earlier

S! in the day (i.e., yesterday at 2:00pm)

$ if today .egs. "Tuesday" .OR. today .egs. "Thursday" .OR. -
today .egs. "Saturday"

3 then

$ @sysSupdate:autogen getdata testfiles feedback

$ mail/sub="Autogen Feedback Report for system-name" -
sys$system:agen$params.report system

$! Clean up

$ purge/keep=7 sys$system:agen$feedback.report

$ purge/keep=7 sys$system:agen$feedback.dat

S purge/keep=7 sys$system:params.dat

$ purge/keep=7 sys$system:autogen.par

$ purge/keep=7 sysSsystem:setparams.dat

$ purge/keep=7 sysS$system:agen$Saddhistory.tmp

$ purge/keep=7 sys$system:agenSaddhistory.dat

$ endif

$ goto end$

$ endif

CR!

S 2PMS:

$ if hour .le. 15

S then

$ next time = "today+0-17"

S gosub submit$

S if today .egs. "Monday" .OR. today .egs. "Wednesday" .OR. -
today .egs. "Friday"

$ then

S @sysSupdate:autogen savparams savparams feedback

$ endif

$ goto end$

S endif

$!

S 5PMS:

$ 1if hour .le. 18

$ then

S next time = "tomorrow+0-1"

S gosub submit$

S endif
|

$! End of working day...

S!

$ END$: I ommm e BATCH.COM ——=-—==——-

$ exit

St++

$! Subrouti
S1——

nes

8-6

(continued on next page)

O

8.8

AUTOGEN Command Procedure
8.7 New Technique for Running AUTOGEN in Batch Mode

Example 8-1 (Cont.) Sample AUTOGEN Command Procedure

St
$ SUBMITS:
$ submit/name="AGEN Batch"/restart/noprint -
/1og=AGEN batch.log -
/queue=sysS$batch/after="'"next time’" sys$system:AGEN batch.com
S return

$l++

$! Error handler

$l--

$ ERRORS:

$ mail/sub="AGEN BATCH.COM - Procedure failed." _nl: system

$ goto end$

Using MAIL to Send AGENSPARAMS.REPORT

After closing the AGEN$PARAMS.REPORT file, AUTOGEN now checks
for the existence of a file named SYS$UPDATE:AGEN$MAIL.COM. If this
file exists, it is executed from within AUTOGEN. (Note, however, that
AUTOGEN does not execute AGEN$MAIL.COM during VMS upgrades or

installations or after minimum system boots.)

You can use AGEN$MAIL.COM alone or with the batch-oriented procedure
described in Section 8.7 to send AGEN$PARAMS.REPORT to the SYSTEM
account or to an account of your choice. To do so, create a command
procedure named SYS$UPDATE:AGEN$MAIL.COM that includes the
following command.:

$ MAIL/SUBJECT="AUTOGEN FEEDBACK REPORT FOR system-name" -
SYS$SYSTEM: AGENSPARAMS .REPORT SYSTEM

If you use the AGEN$MAIL.COM procedure along with the batch-oriented
procedure described in Section 8.7, AGEN$MAIL.COM replaces the MAIL
command line in the batch-oriented command procedure.

8-7

C

9.1

9.2

User Environment Test Package (UETP)

This chapter describes enhancements to the User Environment Test
Package (UETP) that are new for Version 5.4 of the VMS operating
system. For additional information about UETP, see the VMS Version 5.4
Upgrade and Installation Manual.

RRD40 Compact Disc Drive Support

With Version 5.4 of the VMS operating system, the User Environment Test
Package (UETP) now supports the following:

e The RRD40 compact disc drive, including multiple RRD40 units

e SCSI disk configurations that allow both read-only compact discs and
standard read/write disks to use the same device controller name

Vector Processing Support

With Version 5.4 of the VMS operating system, the User Environment
Test Package (UETP) now automatically loads and tests all installed and
enabled vector processors. It also lets you test the VAX Vector Instruction
Emulation Facility (VVIEF).

The vector processor device test, UETVECTOR.EXE, performs simple
vector-scalar and vector-vector arithmetic operations and compares the
results with expected values. The test also uses vector-related system
service extensions and forces the system to generate arithmetic and
memory management exceptions.

For information on using UETP to test vector processors and VVIEF, see
the VMS Version 6.4 Upgrade and Installation Manual. For complete
information about vector processing support, see Chapter 2.

10

10.1

10.2

10.3

10.4

10.5

SYSMAN Utility

This chapter briefly describes enhancements to the VMS System
Management Utility (SYSMAN) that are new for Version 5.4 of the VMS
operating system. For complete information about these new features, see
the revised VMS SYSMAN Utility Manual.

Running a SYSMAN Command Procedure

The SYSMAN command @ now executes the specified SYSMAN command
procedure on each node in the environment.

Defining Keys with the DEFINE command

SYSMAN lets you define keys to execute SYSMAN commands. By defining
keys, you can avoid typing lengthy SYSMAN commands. You can also put
your key definitions in a SYSMAN initialization file, which executes each
time you invoke SYSMAN.

Spawning a Subprocess from Within SYSMAN

If you are in SYSMAN but want to leave temporarily to perform other
functions (such as displaying a directory listing or printing a file) and then
return to SYSMAN, you can use the SPAWN and ATTACH commands.
These commands function in much the same way as the DCL commands
SPAWN and ATTACH.

Using DCL Verification

Using the SYSMAN command SET PROFILE/VERIFY, you can set DCL
verification (both procedure and image) for future DO commands. This lets
you view the lines of DCL command procedures as they execute.

Using Loadable Image Commands

Caution: SYS_LOADABLE commands are not intended for general use. Only
advanced system programmers should use these commands.

The SYS_LOADABLE command set adds and removes executive loaded
images from the list of images that are loaded by the SYSINIT process
during the bootstrap. This new feature is intended primarily for system
programmers to use when writing routines that implement site-specific
policies or special algorithms. These routines can either replace or
augment the built-in VMS policies.

10-1

SYSMAN Utility
10.5 Using Loadable Image Commands

In addition to consulting the VMS SYSMAN Utility Manual for a

more detailed description of the SYS_LOADABLE command set, see
Chapter 14 and Section 22.6 in this manual for related information about
implementing site-specific policies.

10-2

O

C

O

C

11 VAXcluster Management

This chapter describes enhancements to the following VAXcluster
components:

¢ Computer interconnect (CI) architecture extensions
* Mass Storage Control Protocol (MSCP) server load sharing
¢ Preferred path support for DIGITAL Storage Architecture (DSA) disks

See the revised VMS VAXcluster Manual for more information.

Cl Architecture Extensions

Extensions to the computer interconnect (CI) architecture allow the
application of multiple CI interfaces per CPU and multiple star couplers
per VAXcluster system. These extensions make possible VAXcluster
systems with many times the data throughput capacity of current
VAXcluster systems with a single star coupler.

MSCP Server Load Sharing

Beginning with Version 5.4 of the VMS operating system, Mass Storage
Control Protocol (MSCP) servers monitor their I/O traffic and periodically
calculate a Load Available rating to indicate available capacity for I/O
requests.

Load Available is calculated by counting the read and write requests sent
to the server and periodically converting this to requests per second and
subtracting this calculated value from the server’s Load Capacity (also
specified in requests per second).

This information is communicated to the VMS Version 5.4 MSCP class
driver (DUDRIVER and DSDRIVER). When a disk is mounted or a failover
occurs, the class driver selects the server with the highest Load Available
rating to access the disk.

Load Balancing is enabled and controlled by the SYSGEN parameters
MSCP_LOAD and MSCP_SERVE_ALL. In most cases, the values
established by CLUSTER_CONFIG.COM are appropriate.

MSCP_SERVE_ALL determines whether the server participates in load
balancing. If it is set to 2 (serve only local disks), the server does not
monitor its I/O traffic and does not participate in load balancing. Other
valid settings for MSCP_SERVE_ALL (0, 1) result in the server monitoring
1/O traffic and communicating Load Available information to the class
drivers.

11-1

VAXcluster Management
11.2 MSCP Server Load Sharing

MSCP_LOAD is used to communicate Load Capacity to the server, in
addition to its existing function of controlling the loading of the MSCP
server. If it is set to 1, the MSCP server is loaded and its Load Capacity
is set to a default value based upon CPU type. If MSCP_LOAD is set to a
value greater than one, the server is loaded and its Load Capacity set to
that value.

As before, setting MSCP_LOAD to zero disables loading of the MSCP

server.

11.3 Preferred Path Support for DSA disks

The VMS Version 5.4 operating system lets you specify a preferred path
for DIGITAL Storage Architecture (DSA) disks. This includes RA series ~
disks and disks accessed through the MSCP server. C ‘;

If a preferred path is specified for a disk, the MSCP disk class drivers 7
(DUDRIVER and DSDRIVER) uses the path as their first attempt to

locate the disk and bring it online as a result of a DCL MOUNT command

or failover of an already mounted disk.

In addition, it is possible to initiate failover of a mounted disk to force the
disk to the preferred path or to use load balancing information for disks
accessed via MSCP servers.

The preferred path is specified by a $QIO function I0$_SETPRFPTH, @
with the P1 parameter containing the address of a counted ASCII string
(.ASCIC). This string is the node name of the HSC or VMS system that

is to be the preferred path. The node name must match an existing node

known to the local node and, if it is a VMS system, it must be running the

MSCP server. This function does not move the disk to the preferred path.

For more information on the IO$_SETPRFPTH function, refer to the VMS

1/0 User’s Reference Manual: Part I.

9

O

11-2

1 ? System Generation Utility (SYSGEN)

This chapter describes enhancements to the VMS System Generation
Utility (SYSGEN) that are new for Version 5.4 of the VMS operating
system.

121 SCSI_NOAUTO Parameter

The VMS Version 5.4 operating system defines the special SYSGEN
parameter SCSI_NOAUTO for use with MicroVAX or VAXstation
configurations that include third-party Small Computer System Interface
(SCSI) devices. (See VMS Device Support Manual for more about SCSI
devices.) The SYSGEN parameter SCSI_NOAUTO replaces the SYSGEN
parameter VMSD1.

SYSGEN’s autoconfiguration facility automatically loads the VMS SCSI
disk or tape class driver for a device on the SCSI bus that identifies itself
as either a random-access or sequential-access device. If this SCSI device
is to be supported instead by the VMS generic SCSI class driver or a third-
party SCSI class driver, the automatic loading of a VMS SCSI class driver
for the device must be disabled.

The SCSI_NOAUTO parameter, as shown in Figure 12-1, allows a
configuration including a SCSI third-party device to prevent the loading of
a VMS disk or tape SCSI class driver for any given device ID.

Figure 12-1 SCSI_NOAUTO System Parameter

7 07 07 07 0 < SCSI Device ID
N /\ VAN /N /
Y Y Y Y
D C B A < SCSI Port ID
ZK-1371A-GE

The SCSI_NOAUTO system parameter stores a bit mask of 32 bits, where
the low-order byte corresponds to the first SCSI bus (PKAO), the second
byte corresponds to the second SCSI bus (PKBO0), and so on. For each
SCSI bus, setting the low-order bit inhibits automatic configuration of the
device with SCSI device ID 0; setting the second low-order bit inhibits
automatic configuration of the device with SCSI device ID 1, and so forth.
For instance, the value 0000200015 would prevent the device with SCSI
ID 5 on the bus identified by SCSI port ID B from being configured. By

12-1

System Generation Utility (SYSGEN)
12,1 SCSI_NOAUTO Parameter

default, all of the bits in the mask are cleared, allowing all devices to be
configured.

12.2 LOAD_PWD_POLICY Parameter

The SYSGEN parameter LOAD_PWD_POLICY works in conjunction with
the SET PASSWORD Utility and with LOGINOUT (if you are forced to
change your password at login). This parameter controls whether or not
the SET PASSWORD Utility or LOGINOUT attempts to use site-specific
password policy routines, which are contained in the shareable image
SYSSLIBRARY:VMS$PASSWORD_POLICY.EXE. The default is 0.

Installing and enabling a site-specific password policy image requires
both SYSPRV and CMKRNL privileges. To set the LOAD_PWD_POLICY

parameter, enter the following commands:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE

SYSGEN> SET LOAD PWD POLICY 1
SYSGEN> WRITE ACTIVE

SYSGEN> WRITE CURRENT

To make the changes permanent, modify the system parameter file,
MODPARAMS.DAT so the parameter LOAD_PWD_POLICY is set
to 1. ‘

For descriptions of site-defined password filters for the VMS Version 5.4
operating system, see Chapter 14 and Section 22.6.

12.3 LOAD_SYS_ IMAGES Parameter

12-2

The LOAD_SYS_IMAGES parameter controls the loading of system images
described in the system image data file, VMS$SYSTEM_IMAGES.DATA.
Currently, you can replace three system services with services specific to
your site:

e $ERAPAT—Generates a security erase pattern
* $MTACCESS—Controls magnetic tape access
e $HASH_PASSWORD-—Applies a hash algorithm to an ASCII password

Section 22.6 describes how to create a system service image and how to
copy the image into the SYS$LOADABLE_IMAGES directory and add an
entry for it in the VMS system images file using the SYSMAN Utility.
After generating a new system image data file, you reboot the system to
load in your service.

If you have difficulty booting with the site-specific system services and
therefore do not want the site-specific system services loaded, you can set
the parameter of LOAD_SYS_IMAGES to 0 during SYSBOOT. The default
is 1.

System Generation Utility (SYSGEN)
O 12.4 Supported Device Names for VAXft 3000 Systems

12.4 Supported Device Names for VAXft 3000 Systems

With Version 5.4 of the VMS operating system, the System Generation
Utility (SYSGEN) supports the following device types in VAXft 3000

systems:
Code Name Device Type
CM Environmental control monitor
GD DMA driver
EF Logical Ethernet driver
EP Physical Ethernet driver
O PW DSS! disk driver
/ SF Logical DSF driver
SM Physical DSF driver

12.5 New SYSGEN Commands

This section describes the following new SYSGEN commands:
O ¢ SHOW/BI=Blindex
/ * SHOW/BUS=busld

* SHOW/XMI=Blindex

12-3

SHOW/BI=Blindex

SHOW/BI=Blindex

The SHOW/BI=Blindex command displays device addresses that are currently
mapped in the /O space for the VAXBI bus. It also displays node and nexus
numbers and generic names of UNIBUS and MASSBUS adapters, VAXBI
adapters, memory controllers, and interconnection devices such as the DR32
and Cl.

Use of the SHOW/BI=Blindex command requires the CMEXEC privilege.

FORMAT SHOW/BI=Blindex

EXAMPLE

SYSGEN> SHOW/BI

(CPU Type: VAX 8800 Cpu Connection: NMI

**% Bus map for BI 00 on 28-FEB-1990 14:13:02.95 **
Address 20000000 (node 00) responds with value 0108 CI
Address 20004000 (node 02) responds with value 0106 BI - NMI Adapter (NBIB)
Address 2000E000 (node 07) responds with value 0109 BI Combo Board (DMB32)
** Bus map for BI 01 on 28-FEB-1990 14:13:03.00 **
Address 22000000 (node 00) responds with value 0102 UB
Address 22004000 (node 02) responds with value 0106 BI -~ NMI Adapter (NBIB)
Address 2200E000 (node 07) responds with value 410F BI - NI Adapter (DEBNA))

The command in this example displays device addresses that are currently
mapped in the I/O space for the BI bus and additional information about
the BI bus adapters.

12-4

N

SHOW/BUS=busld

SHOW/BUS=buslid

The SHOW/BUS=busld command displays the buses and any subsequent
attached buses and all attached device node numbers, generic names of
processors, memory modules, adapters, VAXBI adapters, memory controllers,
and interconnection devices such as the NI.

Use of the SHOW/BUS command requires the CMEXEC privilege.

FORMAT SHOW/BUS=busld

SYSGEN> SHOW/BUS

Cpu Type: VAX 8800 Cpu Connection: NMT

Bus Node Generic Name Nexus (hex) Connection Address
BI 00 00 CI 0000

BI 0O 02 BI - NMI Adapter (NBIB) 0002

BI 0O 07 BI Combo Board (DMB32) 0007

BI 01 00 UR 0010

BI 01 02 BI - NMI Adapter (NBIB) 0012

BI 01 07 BI - NI Adapter (DEBNA) 0017

The command in this example displays information about all the adapters
on the system buses.

12-5

SHOW/XMI=Blindex

SHOW/XMI=Blindex

The SHOW/XMI=Blindex command displays device addresses that are
currently mapped in the I/O space for the XMI bus. It also displays node and
nexus numbers and generic names of processors, adapters, VAXBI adapters,
memory controllers, and interconnection devices such as the NI.

Use of the SHOW/XMI=Blindex command requires the CMEXEC privilege.

FORMAT SHOW/XMI=Blindex

EXAMPLE

SYSGEN> SHOW/XMI

**% Bus map for XMI 00 on 28-FEB-1990 14:14:50.48 *x*

Address 21880000 (node 01) responds with value 8082 XMI - 6000-400 processor
Address 21900000 (node 02) responds with value 8082 XMI - 6000-400 processor
Address 21980000 (node 03) responds with value 8082 XMI - 6000-400 processor
Address 21A00000 (node 04) responds with value 8082 XMI - 6000-400 processor
Address 21A80000 (node 05) responds with value 8082 XMI - 6000-400 processor
Address 21B00000 (node 06) responds with value 4001 XMI - memory module
Address 21B80000 (node 07) responds with value 4001 XMI - memory module
Address 21C00000 (node 08) responds with value 4001 XMI - memory module
Address 21C80000 (node 09) responds with value 4001 XMI - memory module
Address 21D00000 (node 0OA) responds with value 4001 XMI - memory module
Address 21D80000 (node O0B) responds with value 4001 XMI - memory module
Address 21E00000 (node 0C) responds with value 0C03 XMI - NI adapter (DEMNA)
Address 21E80000 (node 0OD) responds with value 2001 XMI - BI Adapter (DWMBA/A)
Address 21F00000 (node OE) responds with value 2001 XMI - BI Adapter (DWMBA/A)

The command in this example displays device addresses that are currently
mapped in the I/O space for the XMI bus and additional information about
the XMI bus adapters.

12-6

O

C

1 3 Error Log Utility (ERROR LOG)

This chapter describes enhancements to the VMS Error Log Utility
(ERROR LOG) that are new for Version 5.4 of the VMS operating system.

13.1 Supported Device Types for VAXft 3000 Systems

With Version 5.4 of the VMS operating system, the Error Log Utility
supports the following device types in VAXft 3000 systems:

Code Name Device Type

CM Environmental control monitor
DSF32 Synchronous communications adapter
GD DMA driver

EF Logical Ethernet driver

EP Physical Ethernet driver

PW DSSI disk driver

RF31 DSSI fixed hard disk

SF Logical DSF driver

SM Physical DSF driver

TF70 DSSI| magnetic tape drive

13.2 New Keywords for /[EXCLUDE and /INCLUDE Qualifiers

The /EXCLUDE and /INCLUDE qualifiers accept new device-class and
entry-type keywords, described in the following table:

Device-Class Keyword

Function

ADAPTER
CACHE

INFORMATIONAL

VECTOR

Includes or excludes entries for adapter errors

Includes or excludes entries for memory caching
errors

Includes or excludes error {og entries such as media
quality reports from magnetic tape devices

Includes or excludes entries for vector processing
errors

Entry-Type Keyword

Function

CONFIGURATION

Includes or excludes entries that describe system
configuration

13-1

Error Log Utility (ERROR LOG)
13.2 New Keywords for /EXCLUDE and /INCLUDE Qualifiers

Entry-Type Keyword Function

SYNDROME Includes or excludes VAX 9000 console-generated
entries that provide encoded syndrome values used
by Customer Services

13.3 New Qualifier: /NODE

The Error Log Utility now accepts the /NODE qualifier. This qualifier
enables you to generate a report consisting of error log entries for specific
nodes in a VAXcluster.

-
FORMAT /NODE =(node-name],...]) @

Parameter

node-name

Specifies the names of one or more VAXcluster members. Names cannot
exceed six characters. If more than one node name is entered, you must
specify a comma-separated list of node names enclosed in parentheses.

Example @

$ ANALYZE/ERROR_ LOG/NODE= (ORANGE,NASSAU) ERRLOG.OLD; 72

In this example, a VAXcluster includes members ORANGE, PUTNAM, and
NASSAU. The output consists of only those entries that were logged for
VAXcluster members ORANGE and NASSAU.

o

13-2

O

14 System Security

This chapter describes new features of the VMS Version 5.4 operating
system that system managers can use to enhance the security of their
systems. The following sources contain related information as well:

* Chapter 4 (of this manual) and the VMS DCL Dictionary (SET ACL
and SHOW ACL)

* Section 10.5 (using loadable image commands within SYSMAN)
O ¢ Section 12.2 and Section 12.3 (relevant SYSGEN parameters)

¢ Chapter 22 (new and modified system services; implementing site-
specific security policies)

14.1 Site-Defined Password Policy

Starting with the VMS Version 5.4 operating system, passwords selected
by users can be screened for acceptability. The VMS system automatically
O compares new passwords against a system dictionary to ensure that a

password is not a native language word. It also maintains a history list of
a user’s passwords and compares each new password against this list to
guarantee that an old password is not reused. Sites can screen passwords
further by developing and installing an image that filters passwords for
words that are particularly sensitive to the installation.

In addition, a site with contractual obligations to use special algorithms
for encrypting passwords will be able to use them.

security-related system services new for the VMS Version 5.4 operating

C This chapter describes these security enhancements. For descriptions of
system, see Chapter 22.

14.1.1 Screening New Passwords

Sites that choose to let users select their own passwords rather than

use the password generator can now screen user-selected passwords. As
of Version 5.4, the VMS system automatically compares new passwords
against a system dictionary, which is stored in SYS$LIBRARY, to ensure
that a password is not a native language word. The VMS system also
maintains a list of all the passwords a user has had during the year and
compares each new password against this history list to guarantee that an
old password is not reused.

Both the dictionary and the history search can be disabled through the
Authorize Utility. You disable the dictionary search with the DISPWDDIC

O option to the /FLAGS qualifier; you disable the history search with the
DISPWDHIS option to the /FLAGS qualifier. ’

141

System Security

14.1 Site-Defined Password Policy

14.1.11

Password History List

VMS keeps a year’s worth of data in the password history list. If

the password limit is exceeded, the system forces a user to accept
generated passwords. By default, the list stores 60 passwords. A security
administrator can change the defaults for the length of time passwords are
retained and the maximum number of passwords per user.

System Logical Name Default Min Max Units
SYS$PASSWORD_HISTORY_LIFETIME 365 1 28000 days
SYS$PASSWORD_HISTORY_LIMIT 80 1 2000 absolute count

Using the DCL command DEFINE, you can change the defaults for the
capacity and lifetime of the password history list. For example, to increase
the capacity of the history list from 60 passwords to 100, you would add
the following line to the command procedure SYLOGICALS.COM, which is
located in SYSSMANAGER:

$ DEFINE/SYSTEM/EXEC SYSSPASSWORD_HISTORY_ LIMIT 100

There is a correspondence between the lifetime of a password history list
and the number of passwords allowed on the list. For example, if you
increase the password history lifetime to four years and your passwords
expire every two weeks, you would need to increase the password history
limit to at least 104 (4 years times 26 passwords a year). The password
history lifetime and limit can be changed dynamically, but they should be
consistent across all nodes on the cluster.

Sites using secondary passwords might need to double the password limit
to account for the secondary password storage.

The password history list is located in SYS$SYSTEM. The list can be
redirected off the system disk using the logical name VMS$PASSWORD_
HISTORY. This logical name should also be defined /SYSTEM/EXEC and
placed in SYS$MANAGER:SYLOGICALS.COM.

14.1.1.2 Site-Specific Filter

Security administrators can develop a site-specific password filter to
ensure that passwords are not words readily associated with their site, for
example, product names or personnel names. A filter can also check for
particular character variations.

To create a list of site-specific words, you write the source code, create

a shareable image, install the image, and, finally, enable the policy

by setting a SYSGEN parameter. See Section 22.6 for step-by-step
instructions. Installing and enabling a site-specific password filter requires
both SYSPRV and CMKRNL privileges. In addition, if INSTALL and
SYSPRYV file access auditing are enabled, multiple security alarms are
generated when the password filter image is installed and the required
change to the SYSGEN parameter is noted on the operator console.

.
.

O

=

O

Warning:

System Security
14.1 Site-Defined Password Policy

The shareable image contains two global routines that are called by the
VMS Set Password Utility whenever a user changes a password.

The two global routines allow a security administrator to obtain
both the proposed plaintext password and its equivalent quadword
hash value. All security administrators should be aware of this
feature as its subversion by a malicious privileged user will
compromise your system’s security.

Digital recommends that you place security alarm ACEs on the
password filter image and its parent directory. See Section 22.6 for
instructions.

O 14.1.2 Specifying a Password Algorithm

The VMS operating system protects passwords from disclosure through
encryption. VMS algorithms transform passwords from plaintext strings
into cipher text, which is then stored in the user authorization file (UAF).
Whenever a password check is done, the check is based on the encrypted
password, not the plaintext password. The system password is always
encrypted with an algorithm known to the VMS system.

The /ALGORITHM qualifier in the Authorize Utility allows you to define
which algorithm the VMS system should use to encrypt a user’s password,
both primary and secondary. Your choices are the current VMS algorithm
or a site-specific algorithm. The syntax is as follows:

/ALGORITHM=keyword=type [=value]

Table 14-1 lists all the keywords and types you can specify with the
/ALGORITHM qualifier.

To assign the VMS password encryption algorithm for a user, you would
enter the following command.

UAF> MODIFY HOBBIT/ALGORITHM=PRIMARY=VMS

If a site-specific algorithm is selected, you must give a value to identify the
algorithm.

UAF> MODIFY HOBBIT/ALGORITHM=CURRENT=CUSTOMER=128

Section 22.6.1 provides directions for using a customer algorithm. You
must create a site-specific SHASH_PASSWORD in which you define an
algorithm number. This number has to correspond with the number used
in the AUTHORIZE command MODIFY/ALGORITHM.

Whenever a user is assigned a site-specific algorithm, the Authorize Utility
reports this information in the display provided by the SHOW command.

System Security

14.1 Site-Defined Password Policy

144

Table 14-1 Arguments to the /ALGORITHM Qualifier

Keyword Function

BOTH Set the algorithm for primary and secondary passwords.

CURRENT Set the algorithm for the primary, secondary, both, or no
passwords depending on account status. Current is the default
value.

PRIMARY Set the algorithm for the primary password only.

SECONDARY Set the algorithm for the secondary password only.

Type Definition

VMS The algorithm used in the version of VMS that is running on your
system.

CUSTOMER A numeric value in the range 128-255 identifies a customer
algorithm.

O

15 LogManager Control Program Utility (LMCP)

O

The Log Manager Control Program Utility (LMCP) is a component of
DECdtm services residing within the VMS Version 5.4 operating system.
The log manager ensures that, as each transaction is processed, a record
of each transaction state is recorded in a log file on disk.

The DECdtm transaction manager invokes the log manager to write these
transaction records as necessary, ensuring that a consistent transaction
outcome is achieved even in the event of a system failure. Writing log
records is necessary for the consistent recovery of the transaction-specific
data.

This chapter describes how a system manager can use the Log Manager
Control Program Utility (LMCP) to create and manage transaction log
files, and it provides a complete description of all the LMCP commands.

See Chapter 3 for a complete overview of DECdtm services.

O 15.1 Managing Transaction Log Files

C

Note:

To optimize the execution of distributed transactions on your system, you
need to consider a number of factors relating to transaction log files. This
section discusses these factors, providing recommendations and guidelines
in the following areas:

e Using the SYS$JOURNAL logical name

¢ Where to place a transaction log file

¢ How VAXcluster failover works

¢ Determining the initial size required for a transaction log file
* Creating a transaction log file

* Resizing a transaction log file

To use LMCP commands, you must have SYSPRV privilege. To use
the LMCP command CONVERT, you must have CMKRNL privilege.
It is assumed throughout this section that system managers or
other individuals who have these privileges will be implementing
the procedures described herein.

15.1.1 Defining SYS$JOURNAL

C

The logical name SYS$JOURNAL defines the directory location
where DECdtm services expect to find log files. SYS$JOURNAL is
a system-table, executive-mode logical name, normally defined in the
SYS$STARTUP:SYLOGICALS.COM command procedure.

If SYS$JOURNAL is not defined in SYS$STARTUP:SYLOGICALS.COM,
then a default logical name value is defined as SYS$COMMON:[SYSEXE].

15-1

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

You can define SYS$JOURNAL using the following command format:
DEFINE/SYSTEM/EXEC SYS$JOURNAL device:[directory]

The logical name SYS$JOURNAL can be defined as a search list. For
example, the following command defines a search list consisting of two
directories.

$ DEFINE/SYSTEM/EXEC SYS$JOURNAL DISK1:[LOGFILES], DISK2:[LOGFILES]

This example shows DISK1:[LOGFILES] to be the primary, or local,
directory that DECdtm services always search first. DISK2:[LOGFILES]
is the secondary directory, DECdtm services search this directory after the
directory DISK1:[LOGFILES] is searched. If you create a transaction log
file using the LMCP CREATE command, then the log file is placed in the

first directory DISK1:[LOGFILES].

If a transaction log file is created on a different node using
DISK2:[LOGFILES] as the primary—or local—directory and
DISK1:[LOGFILES] as the secondary directory, then the search list
should specify the local log file directory first. Thus, the following
command defines a search list consisting of two directories, where
DISK2:[LOGFILES] is the local directory and the first to be searched
by DECdtm services:

$ DEFINE/SYSTEM/EXEC SYS$JOURNAL DISK2: [LOGFILES], DISK1l:[LOGFILES]

If you create a transaction log file using the LMCP CREATE command,
then the log file is placed in the first directory DISK2:[LOGFILES].

15.1.2 Placing a Transaction Log File

Transactions cannot be started until you have created a transaction
log file, using the LMCP CREATE command. But before you create
a transaction log file, you should consider where to locate it for best
performance on your system.

15-2

A log file can be placed on any file-structured device that is available to
the processor. The following list includes possible alternate locations for
log files, in the recommended order:

1 Shadowed nonsystem disk
2 Nonsystem disk

3 Shadowed system disk

4 System disk

For increased performance, follow the general guidelines for installing a
secondary page/swap file. Use a high-performance, HSC-based disk that
has little activity.

You should also take into account the following considerations when
locating a log file:

Shadowed versus nonshadowed disk

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

®

Because a transaction log file is almost exclusively write-only

during normal processing, a shadowed disk may be slower than a
nonshadowed disk. However, a shadowed disk provides increased data
availability in the event of media failure.

¢ Local versus cluster disk

Although a disk on a local node can provide higher performance,
particularly in an NI-based VAXcluster, if that VAXcluster member
node fails, other nodes in the VAXcluster will not be able to access the
failed nodes disk. (See Section 15.1.3.) Therefore, it is better if disks
are mounted VAXcluster-wide and correctly defined using the logical
name SYS$JOURNAL. That way, if a node fails, other nodes can still
access the failed nodes disk.

O In a VAXcluster, log files should be placed on disks accessible to all
members of the VAXcluster. This practice facilitates VAXcluster failover
by making the log files on each VAXcluster member node available to other
VAXcluster members.

15.1.3 VAXcluster Failover

VAXcluster failover is a mechanism that DECdtm services provide to
O enable VAXcluster nodes to perform recovery for a member node that has
failed.

To make VAXcluster failover work, you need to correctly define
SYS$JOURNAL (as described in Section 15.1.1) so that DECdtm services
can locate all transaction log files in use in the VAXcluster.

VAXcluster failover only occurs within a VAXcluster environment and
is completely automatic and transparent to applications and resource
managers using DECdtm services. VAXcluster failover starts when a
\ VAXcluster member node fails and holds information that surviving
O VAXcluster member nodes need to process their transactions.

When VAXcluster failover is initiated, recovery proceeds while the failed
node is rebooting. This allows other nodes that need information from the
failed node to resolve transactions. It also allows resource managers to
release locks on database records without waiting for the failed node to
reboot.

Normally, each VAXcluster member node is primarily responsible for
accessing its own transaction log file. Any node that requires information
from a log file it does not have open must send a request for that
information to the VAXcluster node member that currently has the log
file open—the node normally responsible for that log file.

During VAXcluster failover, the first requesting node that requires
information from a failed node opens the failed node’s transaction log
file to perform recovery. This action lets recovery on the failed node’s
0 log file begin while the failed node is rebooting. Normally, transaction
recovery on the log file completes before the failed node has rebooted.
Therefore, nodes that had their transactions blocked by the failure of the
VAXcluster node have their transactions resolved before the failed node

15-3

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

reboots. The surviving VAXcluster members proceed as if the failed node
had already rebooted.

Once a VAXcluster member node has opened the log file of a failed node,
all further requests from other VAXcluster member nodes are directed to
the node that has opened the log file. Only one VAXcluster member node
can access a failed node’s log file at any one time. When the failed node
has rebooted, it reacquires access to its log file and requests are passed to
that rebooted VAXcluster node member once again.

15.1.4 Determining Transaction Log File Size

Use the LMCP CREATE command to create transaction log files. The
/SIZE qualifier of this command specifies the size of the log file in blocks.
By default, the file size is 4000 blocks. However, since performance of
transaction processing applications depend on transaction logging, Digital
recommends that you plan ahead when creating log files.

A number of factors must be considered when estimating transaction

log file requirements. These factors include the rate of transactions
executed per second and the duration of the transactions. As a quick way
to estimate log file size, Digital recommends the following algorithm:

Transaction start ratexTransaction duration*40 = log file size in dusk blocks

You can use the MONITOR TRANSACTION command of the Monitor
Utility to determine the start rate and duration for transactions already
executing on your system. (See Section 16.1 for more information about
the MONITOR TRANSACTION command.)

For example, if the start rate is 5 transactions per second and the duration
is 10 seconds, the calculation is:

5 * 10 % 40 = 2000 blocks

The recommended file size for a log file in this example is 2000 blocks.

Due to a number of factors, file size requirements can vary widely from one
system to the next. Therefore, the guidelines listed here for determining
log file size can provide only very rough estimates. When planning for log
files, it is recommended that you overestimate, rather than underestimate,
the file size.

15.1.5 Creating Transaction Log Files

Transactions cannot be started until a transaction log file exists. By
default, processes for DECdtm services are started when a full VMS
boot is executed.! The DECdtm process TP_SERVER then checks for the
existence of a transaction log file on the system and continues checking
every 15 seconds for the existence of a transaction log file on the system
so that recovery can occur automatically, even if a log file’s disk is not
available when the system first boots.

! If you do not want to run DECdtm software, you can prevent the startup of DECdtm processes by defining
the systemwide logical name SYS$DECDTM_INHIBIT. See the note at the beginning of Chapter 3 for more
information.

15-4

O

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

To create a log file, use the LMCP CREATE command. Before creating a
log file, you should understand the recommendations for placing and sizing
log files, as described in Section 15.1.2 and Section 15.1.4.

A log file must be named with the file name SYSTEM$node-name, where
node-name is the name of the node on which the log file will be used. For

example, a log file created on node ORANGE should be given the file name
SYSTEM$ORANGE. The default file type is LM$JOURNAL.

The default file specification for the log file is:

SYS$SJOURNAL: . LMSJOURNAL

C

Note:

15.1.6 Example of Creating a Transaction Log File

This section summarizes the steps involved in creating transaction log files
for a sample VAXcluster system.

To use LMCP commands, you must have SYSPRV privilege. To use
the LMCP command CONVERT, you must have CMKRNL privilege.
It is assumed throughout this section that system managers or
other individuals who have these privileges will be implementing
the procedures described herein.

In this example, the conditions are as follows:

¢ The sample VAXcluster consists of two nodes, RED and BLUE, with
shared access to the devices named DISK1 and DISK2.

* The system manager wants to set up an initial configuration
of transaction log files that allows DECdtm services to perform
VAXcluster failover.

* The system manager needs to create two log files, one for each node.

¢ The system manager has determined that the initial log file size will be
1000 blocks on node RED and 2000 blocks on node BLUE. Figure 15-1
shows the desired configuration.

15-5

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

Figure 15—-1 Sample Transaction Log File Configuration on Two-Node VAXcluster

VAX VAX

BLUE

oo e

[LOGFILES]SYSTEM$RED.LM$JOURNAL [LOGFILES]SYSTEM$BLUE.LM$JOURNAL
(1,000 Blocks) (2,000 Blocks)

ZK-1894A-GE

Based on the conditions established for this example, the system manager
would follow these steps to configure the VAXcluster:

1 On node RED, the system manager would establish a search list for log

files by adding the following line to the SYS$STARTUP:SYLOGICALS
command procedure:

15-6

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

$ DEFINE/SYSTEM/EXEC SYSS$JOURNAL DISK1: [LOGFILES], DISK2:[LOGFILES]

2 On node BLUE, the system manager would define a similar search
list for transaction log files by adding the following line to the
SYS$STARTUP:SYLOGICALS command procedure. Because the
CREATE command creates a log file in the first directory pointed to
by SYS$JOURNAL, this search list will specify the local node log file
directory first.

$ DEFINE/SYSTEM/EXEC SYSS$JOURNAL DISK2: [LOGFILES], DISK1l:[LOGFILES]

3 Assuming that SYS$JOURNAL is defined, the system manager
would then create the log files for each node using the LMCP
CREATE command. On node RED, for example, the system manager
would enter the following LMCP command to create the log file
0 SYSTEMS$RED.LM$JOURNAL with the desired file size:

LMCP> CREATE LOGFILE/SIZE=1000 SYSTEMSRED

4 If SYS$JOURNAL has not been defined, all transactions will abort
until the DECdtm services locate the transaction log file. Therefore,
in this case, the system manager would also need to specify the device
and directory when creating the log file. For example:

IMCP> CREATE LOGFILE/SIZE=1000 DISK1:[LOGFILES]SYSTEMSRED

5 The system manager would then repeat a similar procedure on node
O BLUE by entering following LMCP command to create the transaction
log file SYSTEM$BLUE.LM$JOURNAL with the desired log file size:

LMCP> CREATE LOGFILE/SIZE=2000 SYSTEMS$BLUE

15.1.7 Resizing and Moving Transaction Log Files

If transaction processing performance degrades on your system (indicated
by the rate of transaction stalls), you might need to use the LMCP
C\, CONVERT command to increase the size of the transaction log file, or
: you might need to move the log file to a higher performance disk.

To check for the rate of transaction stalls, use the LMCP command SHOW
LOG/CURRENT, which displays information about the currently active
transaction log file. This display shows the number of checkpoints

and stalls that have occurred since DECdtm services were started and
indicates whether a checkpoint or stall is currently in progress.

Checkpoints are normal, regular, log manager events that are used to
maintain the log file during transaction execution; they do not indicate
degradation in log file performance.

The log manager stalls transactions when insufficient space is available
in the log file for correct and successful transaction execution. A high
rate of stalls or a permanent stall condition indicates that the log file size
should be increased. In such a case, use the LMCP command CONVERT
to increase the size of the log file. Occasional stall events might be caused
0} by transitory system activities such as VAXcluster transition events and
do not necessarily indicate a permanent shortage of space in the log file.

15-7

Log Manager Control Program Utility (LMCP)
15.1 Managing Transaction Log Files

15-8

You can also use the Monitor Utility to check for transaction processing
degradation.

The necessary capacity for a log file depends on the number of
simultaneous transactions and other factors. Because these factors are
variable, Digital cannot recommend the amount of increased size for a
transaction log file. You should estimate the percentage of increased
transaction workload that caused the log to stall.

Prior to moving or resizing a log file, the system manager must do the
following:

1 Disable the transaction log file.

The log file should be disabled before the system is rebooted so that
DECdtm services will not re-open the log file after the reboot. The
recommended method of disabling a log file is to rename it so that
it cannot be found by DECdtm services. Rename the log file with
the file type LMSOLD. For example, if the original log file is called
SYS$JOURNAL:SYSTEM$ORANGE.LM$JOURNAL, it should be
renamed SYS$JOURNAL:SYSTEM$ORANGE.LM$OLD.

2 Reboot the system.

A reboot is necessary because DECdtm services are an integral part
of the VMS Executive and cannot be started or stopped independently
of the VMS operating system. Because of this requirement, serious
considerations should be given to the initial configuration of log files.

After these steps have been completed successfully, the system manager
must perform the following convert procedure to change the size of the
transaction log file:

1 Use the LMCP command CONVERT to move the transaction records
from the old log file to the new log file and increase its size. Name the
new file SYSTEM$node-name LM$JOURNAL.

2 If the convert is successful, delete the old log file.
The system manager can move the log file to an alternate location by
following these steps:

1 Edit SYS$STARTUP:SYLOGICALS.COM on all nodes in the
VAXcluster to include a new definition for the logical name
SYS$JOURNAL, as follows:

$ DEFINE/SYSTEM/EXEC SYSS$SJOURNAL device:[directory]
2 Reboot the system.
3 Copy the log file to the new location, using the following command:

$ COPY DEVICE: [DIRECTORY]SYSTEMS$node-name.LMSOLD -
_S SYS$JOURNAL: SYSTEMS node—name . LMSJOURNAL

4 If the copy is successful, delete the old log file.

O

C

O

Log Manager Control Program Utility (LMCP)
15.2 Format of Transaction Log Files

Format of Transaction Log Files

A transaction log file consists of a file header, section headers, and
transaction records.

A log file header contains information about the log file, such as its
version number, size, unique identifier, and checkpoints. Checkpoints

are mechanisms that bound the search for active transaction records.
Therefore, in the event of a system failure, the log manager can efficiently
locate the active transaction records needed for system recovery. (An
active transaction is one that has not completed.)

A log file is organized into sections and each section has a section header
containing information about its own characteristics. This information is
used by the log manager to find and read transaction records efficiently.

The transaction record header identifies the record number and
information about the transaction, such as the transaction’s state and

its unique transaction identifier (TID). A transaction can be in any of three
states:

e PREPARED—The transaction is in a state where it can be either
committed or rolled back.

¢ COMMITTED—The transaction manager has enough information
to complete the transaction even though the participants in the
transaction have not finished all their operations.

* FORGOTTEN—The participants have enough information to
complete processing the transaction and will no longer ask about
the transaction. Therefore, the transaction can be forgotten.

The transaction record data gives information about the DECdtm version
number, the log identifier, and the name and type of resource manager the
transaction is involved with.

Example 15-1 shows a portion of a sample transaction log file.

15-9

Log Manager Control Program Utility (LMCP)
15.2 Format of Transaction Log Files

Example 15-1 Sample Transaction Log File

Dump of log file DISKI1:[MASTER.JOURNALS]SYSTEMS$BLUE.LM$SJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0 (1]
Log File UID: 9D519DCO~698E-0092-DF95-00000000B20D (21~JUN-1989 09:19:44.54)
Penultimate Checkpoint: 00000012C45E O005E

Last Checkpoint: 000000133E39 0039

Dump of log file DISKI1:[MASTER.JOURNALS]SYSTEMSBLUE.LMSJOURNAL; 1

Present Length: 166 (000000A6) Last Length: 512 (00000200) &)
VBN Offset: 2503 (000009C7) Virtual Block: 2505 (000009C9)
Section: 4 (00000004)

Record number 3 (00000003)@, 77 (004D) bytes @

Transaction state (1): PREPARED

Transaction ID: 2B065A40-6E38-0092-EC42-000000008208 @ (27-JUN-1989 17:16:11.62)
DECdtm Services Log Format V1.0 i?

Type (3): LOCAL RM 8] Log ID:00000000-0000-0000-0000~000000000000 ®

Name (6): "SERVER" ()(5245 56524553)

Type (4): PARENT NODE (5] Log ID:6900BC00-6B4F-0092~C8BD~00000000B208 @

Name (10): "SYSTEMSRED" © (4445 52244D45 54535953)

Log header—Contains information about the log’s characteristics.

Record size—The record size in decimal and hexadecimal.

Transaction state—The three states a transaction can be in are
PREPARED, COMMITTED, and FORGOTTEN.

Transaction ID (TID)—Each transaction has its own unique
transaction identifier assigned by the transaction manager.

DECdtm services.

@ ©¢ © 9606000

Participant type—The types of participant in the transaction.
Participant types include:

e CHILD NODE—A subordinate transaction manager

¢ PARENT NODE—The immediate parent transaction manager

¢ LOCAL RM—The recoverable resource manager on the local node

© Participant name—The name of the participant in the transaction,
also given in hexadecimal.

@® Log ID—A unique hexadecimal log identifier the participant uses to

write its own recovery records.

15-10

Section header—The section header of multiple transaction records.

Record number—A unique record number in decimal and hexadecimal.

DECdtm services version number—The software version number of

Log Manager Control Program Utility (LMCP)
15.2 Format of Transaction Log Files

In Example 15-1, the fields labeled @ comprise the log header, @ comprise
the section header, @ through @ comprise the record header, and @
through @ comprise the record data.

15-11

LMCP Usage Summary

The Log Manager Control Program is a VMS utility that lets you create and
maintain log files of transaction records.

FORMAT

usage summary

15-12

$ RUN SYS$SYSTEM:LMCP

To invoke LMCP, enter the following DCL command:
$ RUN SYS$SYSTEM:LMCP

LMCP returns the following prompt:

LMCP>

At the LMCP> prompt, you can enter LMCP commands. To exit LMCP,
enter EXIT at the LMCP> prompt, or press Ctrl/Z.

You can also execute a single LMCP command by using a DCL string
assignment statement, as shown in the following example:

$ LMCP :== SLMCP
$ LMCP SHOW LOGFILE SYSTEMSYELLOW

In this example, LMCP executes the SHOW command and returns control
to DCL.

To use LMCP commands, you must have SYSPRYV privilege. To use the
LMCP command CONVERT, you must have CMKRNL privilege.

LMCP Comm

Note:

ands

This section describes the following LMCP commands and provides
examples of how to use them:

CONVERT

CREATE

DUMP

HELP

REPAIR, including the following REPAIR subcommands:

ABORT
COMMIT
EXIT
FORGET
HELP
NEXT

SHOW

To use LMCP commands, you must have SYSPRV privilege. To use
the LMCP command CONVERT, you must have CMKRNL privilege.
It is assumed throughout this section that system managers or
other individuals who have these privileges will be implementing
the procedures described herein.

You can abbreviate any command, parameter, or qualifier as long
as the abbreviation is unique.

15-13

LMCP
CONVERT

CONVERT

Converts a log file on a given node by transferring the active transaction
records from the specified source log file to the specified destination log file.
To use the CONVERT command, you need CMKRNL privilege.

FORMAT CONVERT LOGFILE source filespec
destination_filespec
[qualifier...]
PARAMETER source_filespec
Specifies the file specification of the log file from which active transaction
records are to be copied.
destination_filespec
Specifies the file specification of the log file where active transaction
records are to be written.
QUALIFIERS /OWNER=o0owner _id
Associates an owner or user identification code (UIC) with the log file
to be created. You specify the UIC using the standard UIC format as
described in the VMS DCL Concepts Manual. The default UIC is one of
the following:
* The owner UIC of an existing version of the file if the file creator has
extended privileges
* The owner UIC of the parent directory if the file creator has extended
privileges
* The owner UIC of the creator
/SIZE=file_size
Specifies the size of the log file in blocks. The minimum log file size
is 100 blocks.
DESCRIPTION Use the CONVERT command to resize a log file. For example, if

15-14

transaction processing performance degrades on your system, then
you may need to increase the log file size. See Section 15.1.7 for more
information about resizing and moving log files.

O

e

LMCP
CONVERT

EXAMPLE

LMCP> CONVERT LOGFILE SYSTEMSRED.LMS$SOLD SYSTEMS$RED/SIZE=8000

This command transfers all active transaction records from the log file
SYSTEM$RED.LM$OLD to SYSTEMS$RED and specifies a log file size of
8000 blocks.

15-15

LMCP
CREATE

CREATE

Creates a log file for a specific node.

FORMAT

CREATE LOGFILE filespec [qualifier...]

PARAMETER

filespec

Specifies the file specification of the log file to be created. DECdtm services
expect the file name to be in the format SYSTEM$node-name, where
node-name is the name of the node that will use the log file.

QUALIFIERS

/NEW_VERSION

Creates a new version of a log file if a log file with an identical specification
already exists. The new log file is created with the same name and type
but with a version number one higher than the highest existing version.
Note that, once the new version of the transaction log file is created, then
any transaction records in the previous log cannot be accessed.

If the /NEW_VERSION qualifier is specified for a log file that does not
exist, no new file will be created. Instead, an error will be returned.

/OWNER=owner _id

Associates an owner or user identification code (UIC) with the log file to
be created. Specify the UIC using the standard UIC format as described
in the VMS DCL Concepts Manual. The default UIC will be one of the
following:

* The owner UIC of an existing version of the file if the file creator has
extended privileges

* The owner UIC of the parent directory if the file creator has extended
privileges

¢ The owner UIC of the creator
/SIZE=file_size

Specifies the size of the log file in blocks. The minimum log file size
is 100 blocks, and the default log file size is 4000 blocks.

DESCRIPTION

15-16

By default, log files are created in the directory specified by
SYS$JOURNAL, with a file extension of LM$JOURNAL and a size of
4000 blocks. To identify the name of the node that will use the log file, the
file name must be in the following format:

SYSTEM$node-name

LMCP
CREATE

EXAMPLES

LMCP> CREATE LOGFILE SYSTEMS$BLUE/OWNER=GONZALES/SIZE=4400

This command creates a log file called SYSTEM$BLUE.LM$JOURNAL,
associates it with user GONZALES and specifies a file size of 4400 blocks.

LMCP> CREATE LOGFILE SYSTEMS$YELLOW/OWNER=[USER,FRED]/SIZE=4000

This command creates a log file called SYSTEM$YELLOW.LM$JOURNAL,
associates it with the UIC group USER, member FRED, and specifies a log
file size of 4000 blocks.

LMCP> CREATE LOGFILE SYSTEMSBLUE/NEW VERSION/OWNER=GONZALES/SIZE=4400

This command creates a new log file that supersedes the current highest
version of SYSTEM$BLUE.LM$JOURNAL and is given a version number
one higher. Also, the new log file is associated with user GONZALES and
specifies a file size of 4400 blocks.

15-17

LMCP
DUMP

DUMP

Displays (or “dumps”) the contents of a specified log file.

FORMAT DUMP filespec [qualifier...]
PARAMETER filespec

Specifies the file specification of the log file.
QUALIFIERS /ACTIVE

15-18

Specifies that only records relating to active transactions within the log
file are to be displayed.

/FORMAT(default)
/NOFORMAT

Displays the contents of the log file as formatted records. If the
/NOFORMAT qualifier is specified, only the log file header is displayed.

/HEX

Specifies that the contents of the log file dump are displayed as ASCII
characters and hexadecimal longwords. Use both the /NOFORMAT and
/HEX qualifiers to format a DUMP operation in hexadecimal only.

/LOGID=log_identifier

Specifies the log identifier, in hexadecimal format, associated with a
specific resource manager. The /LOGID qualifier can be used only in
conjunction with the /RM qualifier.

/OUTPUT[=filespec]

Specifies that the output is written to the file specified. By default,

the DUMP command writes the output to SYS$OUTPUT. If you enter
/OUTPUT with no file specification, LMCP_DUMP is the default file name
and LIS is the default type.

/RM=rm_identifier

Selects the transactions to be displayed according to the resource manager
participating in the transaction. The argument supplied for the rm_
identifier can be either the ASCII character string for the resource
manager name or its hexadecimal equivalent. When specifying a
hexadecimal string, you must prefix the characters %X to the hexadecimal
string.

If a partial resource manager name is supplied as the argument for the
rm_identifier, LMCP selects all resource managers having names that
begin with the supplied string.

@

O

LMCP
DUMP

/STATE=transaction_state

Selects the transactions to be displayed according to their transaction

states. A value of either PREPARED or COMMITTED can be supplied
as an argument to the /STATE qualifier. If the /STATE qualifier is not
supplied, all transactions records are selected.

/TID=transaction_id

Selects the transactions to be displayed according to the transaction
identifier. The argument supplied for the transaction_id must be a
hexadecimal character string.

DESCRIPTION If you entered the DUMP command, the contents of the log file you

C

specified are displayed. By default the log file records are displayed as
formatted records.

EXAMPLES

C

LMCP> DUMP SYSTEMSBLUE/HEX/NOFORMAT

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEMSBLUE.LMS$JOURNAL; 2
End of file block 4000 / Allocated 4000
Log Version 1.0

Log File UID: 9D519DC0-698E-0092-DF95-00000000B20D (21~-JUN-1989 09:19:44.54)
Penultimate Checkpoint: 00000012C45E OO05E
Last Checkpoint: 000000133E39 0039

Dump of log file DISK1l:[MASTER.JOURNALS]SYSTEMSBLUE.LM$JOURNAL; 2

Present Length: 68 (00000044) Last Length: 512 (00000200)
VBN Offset: 2504 (000009C8) Virtual Block: 2506 (000009CA)
Section: 3 (00000003)

Record number 1 (00000001), 48 (0030) bytes
Transaction state (2): COMMITTED
Transaction ID: 2B065A40-6E88-0092-EC42-00000000B208 (27-JUN-1989 17:16:11.62)

01000000 00B20842 EC00926E 882B065A 40020030 0..@Z2.+.n..1B."..... 0000
00060000 00000000 00000000 00000000 00000300 ..., 0014
00305245 56524553 SERVERO. 0028

Dump of log file DISK1l:[MASTER.JOURNALS]SYSTEMSBLUE.LM$SJOURNAL; 2

Present Length: 166 (000000A6) Last Length: 512 (00000200)
VBN Offset: 2503 (000009C7) Vvirtual Block: 2505 (000009C9)
Section: 4 (00000004)

Record number 3 (00000003), 77 (004D) bytes
Transaction state (1): PREPARED
Transaction ID: 2B065A40-6E88-0092-EC42-00000000B208 (27-JUN-1989 17:16:11.62)

01000000 00B20842 ECQ0926E 882B065A 4001004D M..@QZ.+.n..1iB."..... 0000
00060000 00000000 00000000 00000000 00000300 v v v it i e et ee e, 0014
00B208BD C800926B 4F6900BC 00045245 56524553 SERVER..4.i0k..E%.”. 0028
00 4D444552 244D4554 53595300 0A000000 SYSTEMSREDM. 003C
Record number 2 (00000002), 21 (0015) bytes
Transaction state (0): FORGOTTEN
Transaction ID: 2A6DC3C0-6E88-0092-EC42-00000000B208 (27-JUN-1989 17:16:10.62)
15000000 00B20842 ECO00926E 882A6DC3 C0000015 ...AAm*.n..iB.%..... 0000

00 . 0014

15-19

LMCP
DUMP

Record numper 1 (00000001), 48 (0030) bytes

Transaction state (2): COMMITTED
Transaction ID: 2A6DC3C0-6E88-0092-~EC42-00000000B208 (27-JUN-1989 17:16:10.62)
01000000 00B20842 EC00926E 882A6DC3 C0020030 0..AAm*.n..iB.”..... 0000
00060000 00000000 00000000 00000000 00000300 . .v v i e ennnnn 0014
00305245 56524553 SERVERO. 0028

This command produces a dump—in hexadecimal format—of the specified
log file.

LMCP> DUMP SYSTEMS$BRLUE/HEX/OUTPUT=EXAMPLE

This command writes a dump—in hexadecimal format—of the specified log

file to the file EXAMPLE.LIS.

LMCP> DUMP SYSTEMSPURPLE/ACTIVE

Dump of log file DISKI1:[MASTER.JOURNALS]SYSTEMSPURPLE.LM$JOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 2F99A820-BAB2-0092-9310-00000000B1FE (2-0OCT-1989 15:28:26.53)
Penultimate Checkpoint: 000000000000 0000

Last Checkpoint: 000000010BDY9 01D9Y

Transaction state (2): COMMITTED

Transaction ID: 84C67760~BAB2~-0092-8243-00000000BR1FE (2-0CT-1989 15:30:49.43)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000

Name (11): "THREAD 5.29" (39322E 355F4441 45524854)

Type (2): CHILD NODE Log ID: 748FF0C0-B52A-0092-9011-00000000B204

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

Transaction state (2): COMMITTED

Transaction ID: 84Cl1E380-BAB2-0092-8243-00000000B1FE (2-OCT-1989 15:30:49.40)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000

Name (11): "THREAD 4.29" (39322E 345F4441 45524854)

Type (2): CHILD NODE Log ID: 748FF0CO0-B52A-0092-9011-00000000B204

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

Total of 2 transactions active, 0 prepared and 2 committed.

This command displays a dump of all active transactions of the specified
log file.

LMCP> DUMP SYSTEMSGREEN/STATE=PREPARED

Dump of log file DISK1l: [MASTER.JOURNALS]SYSTEMSGREEN.LM$SJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 748FF0C0-B52A-0092-9011-00000000B204 (25-SEP-1989 14:34:14.86)
Penultimate Checkpoint: 00000002DDB7 01B7

Last Checkpoint: 00000002FC41 0241

Dump of log file DISK1l:[MASTER.JOURNALS]SYSTEMSGREEN.LM$JOURNAL; 1

Present Length: 169 (000000A9) Last Length: 512 (00000200)
VBN Offset: 380 (0000017C) Virtual Block: 382 (0000017E)
Section: 2 (00000002)

15-20

O

LMCP
DUMP

Record number 3 (00000003), 80 (0050) bytes

Transaction state (l1): PREPARED

Transaction ID: F30CAF60-BA84-0092-8FA6-00000000B24B (2-0CT-1989 10:04:37.59)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000

Name (6): "SERVER" (5245 56524553)

Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-00000000B24B

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEMSGREEN.LM$JOURNAL; 1

Present Length: 100 (00000064) Last Length: 512 (00000200)
VBN Offset: 379 (0000017B) Virtual Block: 381 (0000017D)
Section: 3 (00000003)

Record number 1 (00000001), 80 (0050) bytes

Transaction state (1): PREPARED

Transaction ID: F2F8D940-BA84-0092-8FA6-00000000B24B (2-0CT-1989 10:04:37.46)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000

Name (6): "SERVER" (5245 56524553)

Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-00000000B24B

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

Dump of log file DISK1:[MASTER.JOURNALS]SYSTEMSGREEN.LM$JOURNAL; 1

Present Length: 100 (00000064) Last Length: 0 (00000000)
VBN Offset: 0 (00000000) Virtual Block: 2 (00000002)
Section: 376 (00000178)

Record number 1 (00000001), 80 (0050) bytes

Transaction state (1): PREPARED

Transaction ID: 809D5600-RA84-0092-8FA6-00000000B24B (2-0CT-1989% 10:01:25.60)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000
Name (6): "SERVER" (5245 56524553)

Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-00000000B24B
Name (13): "SYSTEM$SORANGE" (45 474E4152 4F244D45 54535953)

This command displays a dump of all prepared records of the specified log
file.

LMCP> DUMP SYSTEMSGREEN/TID=FAC21DE2-BA88-0092-8FA6-00000000B24B/ACTIVE
Dump of log file DISK1:[MASTER.JOURNALS]SYSTEMSGREEN.LMS$SJOURNAL; 1

End of file block 4000 / Allocated 4000
Log Version 1.0

Log File UID: 68165820-BA84-0092-FC95-00000000B24B (2-0CT-1989 10:00:44.45)
Penultimate Checkpoint: 0000000711D3 13D3

Last Checkpoint: 000000072742 1542

Transaction state (2): COMMITTED

Transaction ID: FAC21DE2-BA88-0092-8FA6-00000000B24B (2-0CT-1989 10:33:28.51)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM- Log ID: 00000000-0000-0000-0000-000000000000

Name (11): "THREAD 13.4" (342E33 315F4441 45524854)

Total of 2 transactions active, 0 prepared and 2 committed.

This command displays a dump of the record for the specified active
transaction. (If the transaction is not active, only the active transaction
count number is displayed.)

15-21

LMCP
HELP

HELP

Provides information about LMCP commands and parameters.

FORMAT HELP [help-topic [help-subtopic]]

PARAMETER help-topic

Specifies the command to be explained.

help-subtopic
Specifies the qualifier to be explained.

EXAMPLES

LMCP> HELP

Information available:

CONVERT CREATE Description DUMP EXIT HELP
REPAIR SHOW

This command invokes help and displays all commands for which further
information exists.
LMCP> HELP CREATE
CREATE
Creates a log file.
Format:

CREATE LOGFILE filespec [qualifier...]

Additional information available:

filespec qualifiers
/OWNER /SIZE
Example

This command provides a description of the CREATE command.

15-22

@
S

LMCP
REPAIR

REPAIR

Note:

Selects records within a log file so that transactions can be repaired by having
their transaction states changed. Once the transaction records have been
selected, REPAIR subcommands can be used to change the transaction
states.

Because the REPAIR command lets you change transaction
states locally without regard to the global state, you must use
this command with caution. If you do not change all necessary
characteristics of a transaction record, the transaction could be
placed in an inconsistent state, resulting in potential data loss.

FORMAT

REPAIR filespec [qualifier...]

PARAMETER

filespec
Specifies the file specification of the log file containing the transaction
records to be repaired.

QUALIFIERS

/LOGID=log identifier

Specifies the log identifier, in hexadecimal format, associated with a
specific resource manager. The /LOGID qualifier can be used only in
conjunction with the /RM qualifier.

/RM=rm_identifier

Selects the transactions to be repaired according to the resource manager
participating in the transaction. The argument supplied for the rm_
identifier can be either the ASCII character string for the resource
manager name or its hexadecimal equivalent. When specifying a
hexadecimal string, you must prefix the characters %X to the hexadecimal
string.

If a partial resource manager name is supplied as the argument for the
rm_identifier, LMCP selects all resource managers having names that
begin with the supplied string.

/STATE=transaction state

Selects the transactions to be repaired according to their transaction
states. A value of either PREPARED or COMMITTED can be supplied
as an argument to the /STATE qualifier. If the /STATE qualifier is not
supplied, all active transactions (both PREPARED and COMMITTED) are
selected.

/TID=transaction_id

Selects the transactions to be repaired according to the transaction
identifier. The argument supplied for the transaction_id must be a
hexadecimal character string.

15-23

LMCP
REPAIR

DESCRIPTION The REPAIR command allows you to manually modify active transaction
records in a log file.

When you enter the REPAIR command, LMCP enters the REPAIR
command mode and produces a listing of the log file’s contents, as selected
by the specified REPAIR command qualifier. Each transaction record is
displayed sequentially so that you can modify its characteristics. After
each record in the filtered log file is displayed, the REPAIR> prompt
returns. You can then enter REPAIR subcommands to change the
transaction states of specific records. The REPAIR subcommands are

as follows:

ABORT

COMMIT ,
EXIT (/ N
FORGET N
HELP

NEXT

Once you finish modifying a transaction record, you can use the REPAIR
subcommand NEXT to advance to the next sequential record in the file.

To return to the LMCP> prompt, you must exit the REPAIR command
mode by entering the EXIT subcommand or by pressing Ctrl/Z.

The sections that follow the REPAIR command examples describe each of (D
the REPAIR subcommands. -

EXAMPLES

LMCP> REPAIR SYSTEMS$SORANGE/STATE=PREPARED/RM=LOGL

This command selects all PREPARED transaction records in the log file

SYSTEM$ORANGE. It specifies that only records from participating N
resource managers having names beginning with "LOGL" are to be b)
selected. '

LMCP> REPAIR SYSTEMSORANGE/RM=LOGLOAD -
_LMCP> /LOGID=68165820-BA84-0092-FC95-00000000B24B

This command selects all active transaction records in the log file
SYSTEM$ORANGE. It specifies that only records with a participating
resource manager called LOGLOAD and associated log identifier of
68165820-BA84-0092-FC95-00000000B24B are to be selected.

LMCP> REPAIR SYSTEM$ORANGE/RM=%X534552564552

This command selects all active transaction records in the log file
SYSTEM$ORANGE. It specifies that only records from a participating
resource manager with a hexadecimal name 534552564552 are to be
selected.

15-24

LMCP
REPAIR

LMCP> REPAIR SYSTEM$ORANGE -
_LMCP> /TID=8C689380-BA84~-0092~-8FA6~00000000B24B

This command selects the active transaction record in the log file
SYSTEMS$ORANGE. It specifies that only the record for the transaction
with a hexadecimal TID 8C689380-BA84-0092-8FA6-00000000B24B is to
be selected.

15-25

REPAIR
ABORT

ABORT

Changes the state of a transaction from PREPARED to ABORTED.

FORMAT ABORT

EXAMPLE

LMCP> REPAIR SYSTEMSRED

Dump of log file DISKSMASTER: [MASTER.JOURNALS]SYSTEMSRED.LMS$SJOURNAL; 1
End of file block 4000 / Allocated 4000
Log Version 1.0

Log File UID: 748FF0C0-B52A-0092-9011-00000000B204 (25-SEP-1989 14:34:14.86)
Penultimate Checkpoint: 000000073E2D 042D

Last Checkpoint: 000000077D7C 037C

Transaction state (1): PREPARED

Transaction ID: FACFD981-BA88-0092-8FA6-~00000000B24B (2-0CT-1989 10:33:28.60)
DECdtm services V1.0

Type (3): LOCAL RM Log ID: 00000000~0000~0000~0000-000000000000

Name (6): "SERVER" (5245 56524553)

Type (4): PARENT NODE Log ID: 68165820-BA84-0092~-FC95-00000000B24B

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

REPAIR> ABORT

REPAIR> EXIT

LMCP>

The initial REPAIR command selects all active transaction records in
the log file SYSTEM$RED. The ABORT subcommand changes the state
of the presented transaction from PREPARED to ABORTED. The EXIT
subcommand exits the REPAIR command mode.

15-26

REPAIR
COMMIT

COMMIT

Changes the state of a transaction from PREPARED to COMMITTED.

FORMAT COMMIT

EXAMPLE

LMCP> REPAIR SYSTEMSRED

Dump of log file DISK$MASTER: [MASTER.JOURNALS]SYSTEMSRED.LMSJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 7T48FF0C0-B52A-0092-9011-00000000B204 (25-SEP-1989 14:34:14.86)
Penultimate Checkpoint: 000000073E2D 042D

Last Checkpoint: 000000077D7C 037C

Transaction state (1): PREPARED

Transaction ID: FACFD981-BA88-0092-8FA6-00000000B24B (2-0CT-1989 10:33:28.60)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000-000000000000

Name (6): "SERVER" (5245 56524553)

Type (4): PARENT NODE Log ID: 68165820-BA84-0092-FC95-00000000B24B

Name (13): "SYSTEMSORANGE" (45 474E4152 4F244D45 54535953)

REPAIR> COMMIT

REPAIR> EXIT

LMCP>

The initial REPAIR command selects all active transaction records in
the log file SYSTEM$RED. The COMMIT subcommand changes the
state of the transaction from PREPARED to COMMITTED. The EXIT
subcommand exits the REPAIR command mode.

15-27

REPAIR

EXIT
Exits the REPAIR command mode and returns the LMCP> prompt.
—]
FORMAT EXIT

15-28

N’

REPAIR
FORGET

FORGET

Specifies that a transaction with a state of COMMITTED can be forgotten,
which means the committed transaction record can be removed from the log
file.

FORMAT FORGET

EXAMPLE

LMCP> REPAIR SYSTEMSRED

Dump of log file DISKS$SMASTER: [MASTER.JOURNALS]SYSTEMS$RED.LMS$SJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 748FF0C0-B52A-0092-9011-00000000B204 (25-SEP-1989 14:34:14.86)
Penultimate Checkpoint: 000000073E2D 042D

Last Checkpoint: 000000077D7C 037C

Transaction state (2): COMMITTED .

Transaction ID: F2F8D940-BA84-0092-8FA6-00000000B24B (2-0CT-1989 10:04:37.46)
DECdtm Services Log Format V1.0

Type (3): LOCAL RM Log ID: 00000000-0000-0000-0000~000000000000

Name (10): "THREAD_ 6.4" (342E 365F4441 45524854)

REPAIR> FORGET

REPAIR> NEXT

The initial REPAIR command selects all active transaction records in
the log file SYSTEM$RED. The FORGET subcommand specifies that the
transaction can be forgotten. The NEXT subcommand advances to the
next record.

15-29

REPAIR
HELP

HELP

Provides information about REPAIR subcommands and parameters.

FORMAT HELP [help-topic [help-subtopic]]

PARAMETER help-topic

Specifies the subcommand to be explained.

help-subtopic
Specifies the qualifier to be explained.

EXAMPLES
REPAIR> HELP
REPAIR
SUBCOMMANDS

Entering the REPAIR command produces a listing of the log file’s
contents, as selected by the optional REPAIR command qualifiers. Each
transaction record is displayed sequentially, so that a user can modify
its characteristics.

After each record in the filtered log file is displayed,

the REPAIR> prompt is returned. A user can then issue REPAIR
subcommands to change the transaction states of specific records.

A user must issue a NEXT subcommand to advance to the next seguential
record in the file.

To return to the LMCP> prompt, a user must exit the REPAIR command
mode by entering the EXIT subcommand or by pressing Ctrl/Z.

Additional information available:

ABORT COMMIT EXIT FORGET NEXT

This command invokes help and displays all subcommands for which
further information exists.

15--30

REPAIR
HELP

REPAIR> HELP ABORT

REPAIR
SUBCOMMANDS
ABORT

Changes the state of a transaction from PREPARED to ABORTED.
Format:

ABORT

This command provides a description of the ABORT subcommand.

15-31

REPAIR

NEXT
NEXT

Advances to the next record in a transaction log.
FORMAT NEXT

15-32

LMCP
SHOW

SHOW

Lists information about transaction log files.

FORMAT SHOW LOGFILE filespec [qualifier...]

PARAMETER filespec

Specifies one or more log files to be listed. The syntax of the file
specification determines which files will be listed, as follows:

* If you enter a file name or a file name containing a wildcard character,
the SHOW command lists each file matching the name specified.

e If you do not enter a file specification, the SHOW command lists all log
files in the directory SYS$JOURNAL.

QUALIFIER /CURRENT

Specifies that information about the currently active log file, is shown.
This information includes the number of checkpoints and stalls that have
occurred since DECdtm services were started up and indicates whether a
checkpoint or stall is currently in progress.

Note that no file specification is necessary when the qualifier /CURRENT
is used.

/FULL
Lists all log file attributes.

/OUTPUT][=filespec]

Specifies that the output be written to the file specified. By default,

the SHOW command writes the output to SYS$OUTPUT. If you enter
/OUTPUT with no file specification, then LMCP_SHOW is the default file
name and LIS is the default type.

DESCRIPTION The SHOW command produces a list of existing log files matching the

selection criteria specified. The asterisk and percent sign wildcard
characters can be passed to the SHOW command to represent file names.

N

EXAMPLES

LMCP> SHOW LOGFILE SYSTEMSB*/FULL
Directory of DISKSMASTER: [MASTER.JOURNALS]

DISKSMASTER: [MASTER.JOURNALS]) SYSTEMSBLUE . LM$JOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 275300C0~-7A71-0092-D3A8-00000000B232 (12-JUL-1989 21:01:40.94)
Penultimate Checkpoint: OOO00CE644AF2 02F2

Last Checkpoint: 0000CE6457F2 03F2

15-33

LMCP
SHOW

DISKSMASTER: [MASTER. JOURNALS] SYSTEMSBLACK.LMSJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 9D519DC0-698E~-0092-DF95-00000000B20D (21~JUN-1989 09:19:44.54)
Penultimate Checkpoint: 00000012C45E O005E

Last Checkpoint: 000000133E39 0039

DISKSMASTER: [MASTER.JOURNALS] SYSTEMSBRONZE . LM$S JOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: 21847980~-5F78-0092-3F5D-00000000B1FF (8-JUN-1989 13:13:36.28)
Penultimate Checkpoint: O0CO000ECADES 41E5S

Last Checkpoint: 000000F105FC 41FC

DISKSMASTER: [MASTER.JOURNALS] SYSTEM$BROWN . LMSJOURNAL; 1

End of file block 4000 / Allocated 4000

Log Version 1.0

Log File UID: A6173DC0O-3DEZ-0092-0000-00000000B1FF (26-APR-1989 19:30:25.82)
Penultimate Checkpoint: 00000C8B4819 2019

Last Checkpoint: 00000C8BC15B 335B

Total of 4 files.

This command lists all log files with file names beginning with
SYSTEM$B.

LMCP> SHOW LOGFILE
Directory of DISK1l:[MASTER.LOGFILES]

SYSTEMSBLACK . LM$JOURNAL; 1
SYSTEMS$BLUE . LM$SJOURNAL; 1

Total of 2 files.
Directory of DISKI1l: [MASTER.NAMES]

SYSTEMSGREEN.LM$SJOURNAL; 1
SYSTEMSORANGE . LM$SJOURNAL; 1
SYSTEMSRED . LMS JOURNAL; 1

Total of 3 files.

Grand total of 2 directories 5 files.
This command lists all directories equivalent to SYS$JOURNAL and their
log files.

LMCP> SHOW LOGFILE SYSTEMSRED/FULL/OUTPUT=EXAMPLE

This command lists all percentage information for the specified log file and
writes it to the file EXAMPLE.LIS.

LMCP> SHOW LOGFILE/CURRENT

Checkpoints started/ended 124/123
Stalls started/ended 1/1
Log status: checkpoint in progress, no stall in progress

This command shows status information about the currently active log file.

15-34

C

16 Monitor Utility (MONITOR)

C

The VMS Monitor Utility (MONITOR) is a system management tool that
you can use to obtain information about operating system performance.

This chapter describes the following enhancements to Version 5.4 of the
VMS Monitor Utility:

¢ New MONITOR TRANSACTION command and TRANSACTION class
(for use within a DECdtm services environment)

¢ New MONITOR VECTOR command and VECTOR class (for use within
a vector processing environment)

See the VMS Monitor Utility Manual for information about other classes
and commands.

16.1 MONITOR TRANSACTION Command

C

C

The MONITOR TRANSACTION command initiates monitoring of the
TRANSACTION class, which shows information about transactions
coordinated by the DECdtm services. (For a complete description of
DECdtm services, see Chapter 3.)

Use this command as follows:

1 Invoke the MONITOR Ultility by entering the DCL command
MONITOR. The utility then displays the following prompt:

MONITOR>

2 At the MONITOR prompt, enter the MONITOR TRANSACTION
command. The format, description, and examples of how to use this
command follow.

FORMAT

MONITOR TRANSACTION

Qualifiers

/qualifier[,...]
One or more qualifiers, described as follows:

Class-name qualifiers

/ALL

Specifies that a table of all available statistics (current, average, minimum,
and maximum) is to be included in the display and summary output. For
summary output, this qualifier is the default for all classes; otherwise,

it is the default for all classes except CLUSTER, MODES, PROCESSES,
STATES, SYSTEM, and VECTOR.

16-1

Monitor Utility (MONITOR)
16.1 MONITOR TRANSACTION Command

/AVERAGE

Selects average statistics to be displayed in a bar graph for display and
summary output.

/CURRENT
Selects current statistics to be displayed in a bar graph for display

-and summary output. The /CURRENT qualifier is the default for the

CLUSTER, MODES, STATES, SYSTEM, and VECTOR classes.

/MAXIMUM

Selects maximum statistics to be displayed in a bar graph for display and
summary output.

/MINIMUM

Selects minimum statistics to be displayed in a bar graph for display and
summary output.

DESCRIPTION

— — —

The TRANSACTION class consists of the following data items:
¢ Start Rate—The rate at which transactions are started.

* Prepare Rate—The rate at which transactions are placed in the
prepare state by DECdtm services.

¢ One-Phase Commit Rate—The rate that one-phase commit
transactions complete using the one-phase commit operation. This
operation, which consumes significantly fewer system resources, is
used when there is only a single resource manager participating in the
transaction.

¢ Total Commit Rate—The rate at which transactions are committed.
This value is the combined total of one-phase and two-phase commit
transactions.

¢ Abort Rate—The rate at which transactions are aborted.
* End Rate—The rate at which transactions are ended.

* Remote Start Rate—The rate at which transactions are started by a
transaction manager on a remote node.

* Remote Add Rate—The rate of remote add branch operations.

* Completion Rate—The rate of completed transactions, indexed by their
duration time in seconds. Following is a list of the completion rate

categories:

Completion Rate 0-1 The number of transactions completed in 0-1
second (1 second or less)

Completion Rate 1-2 The number of transactions completed in 1-2
seconds

Compietion Rate 2-3 The number of transactions completed in 2-3
seconds

Completion Rate 3-4 The number of transactions completed in 3-4
seconds

N

Examples

Completion Rate 4-5

Completion Rate 5+

A transaction completed in 0.5 second is included in the count

Monitor Utility (MONITOR)
16.1 MONITOR TRANSACTION Command

The number of transactions completed in 4-5

seconds

The number of transactions that took more than 5

seconds to complete

displayed for the Completion Rate 0-1 category, which indicates the
number of transactions completed in the last time interval that took
0-1 second to execute. See the example displays that follow.

MONITOR> MONITOR TRANSACTION/ALL

Start Rate 34
Prepare Rate 33.
One Phase Commit Rate 0.
Total Commit Rate 35.
Abort Rate
End Rate 35.
Remote Start Rate 31.
Remote Add Rate 31.
Completion Rate 0-1 35.
by Duration 1-2
in Seconds 2-3 0
3-4 0
4-5 0
5+ 0

VAX/VMS Monitor Utility

DISTRIBUTED TRANSACTION STATISTICS

on node SAMPLE
16-JAN-1990 14:52:34

0.

This example shows the status of all transactions on node SAMPLE.

0.

CUR

.76
77
00
09
00
09
12
45

09
00
.00
.00
.00
.00

[N eNeNe]

AVE

.76
.77
.00
.09
.00
.09
.12
.45

.09
.00
.00
.00
.00
.00

34.
33.

35.

35.
31.
31.

35.

[eNeNeNe)

MIN

76
77
.00
09
.00
09
12
45

09
.00
.00
.00
.00
.00

34.
33.
0.
35.
C.
35.

31
31

35.
0.

[eNeNeNel

MAX

76
77
00
09
00
09
.12
.45

09
00
.00
.00
.00
.00

16-3

Monitor Utility (MONITOR)
16.1 MONITOR TRANSACTION Command

MONITOR> MONITOR TRANSACTION/MAXIMUM

Start Rate
Prepare Rate

One Phase Commit Rate
Total Commit Rate

Abort Rate
End Rate

Remote Start Rate

Remote Add Rate

Completion Rate
by Duration
in Seconds

This example shows the maximum statistics of all transactions on node

SAMPLE.

VAX/VMS Monitor Utility

-+ DISTRIBUTED TRANSACTION STATISTICS

on node SAMPLE
16-JAN-1990 14:51:04

35
37

35
35
33
32

35

0 25 50 75
T Tt Tl
’****‘k*‘k***‘k***
|****~k*****~k***

\

[**********‘k***
‘********‘k*****
|**********‘k‘k‘k
‘************

[

\
l
\
r
|
B e T S e 3

£
N

Monitor Utility (MONITOR)
O 16.2 TRANSACTION Class Record

16.2 TRANSACTION Class Record

The TRANSACTION class record contains data describing the operations
of the DECdtm transaction manager. The TRANSACTION class has a
record type of 22 and a size of 69 bytes. Figure 16-1 illustrates the format
of a TRANSACTION class record; Table 16—1 describes the contents of
each of its fields.

Figure 16—1 TRANSACTION Class Record Format

Class Header
(14 Bytes)
O I
Starts MNR_TRA$L _STARTS
Prepares MNR_TRA$L_PREPARES
One Phase Commits MNR_TRAS$L_ONE_PHASE
Commits MNR_TRAS$L_COMMITS
O Aborts MNR_TRASL_ABORTS
’ Ends MNR_TRA$L_ENDS
Branches MNR_TRA$L BRANCHS
Adds MNR_TRAS$L_ADDS
0-1 Transactions MNR_TRAS$L BUCKETSH1
1-2 Transactions MNR_TRAS$L_BUCKETS2
(D 2_3 Transactions MNR_TRASL_BUCKETS3
3-4 Transactions MNR_TRASL_BUCKETS4
4-5 Transactions MNR_TRAS$L BUCKETS5
5+ Transactions MNR_TRAS$L_BUCKETS6

ZK-2023A-GE

16-5

Monitor Utility (MONITOR)
16.2 TRANSACTION Class Record

Table 16—1 Descriptions of TRANSACTION Class Record Fields

Field Symbolic Offset Contents

Starts MNR_TRAS$L_STARTS Count of transaction operations started. The number
of times the system service $START_TRANS has
been successfully completed (longword, C).

Prepares MNR_TRAS$L_PREPARES Count of transactions that have been prepared

One Phase Commits

Commits

Aborts

Ends

Branches

Adds

0-1 Transactions

1-2 Transactions

2-3 Transactions

3-4 Transactions

4-5 Transactions

5+ Transactions

MNR_TRAS$L_ONE_PHASE

MNR_TRA$L_COMMITS

MNR_TRAS$L_ABORTS

MNR_TRAS$L_ENDS

MNR_TRAS$L_BRANCHS
MNR_TRA$L_ADDS
MNR_TRA$L_BUCKETSH
MNR_TRA$L_BUCKETS2
MNR_TRA$L_BUCKETS3
MNR_TRA$L_BUCKETS4
MNR_TRAS$L_BUCKETS5

MNR_TRA$L_BUCKETS6

(longword, C).

Count of one-phase commit events initiated
{longword, C).

Count of transactions committed. This is the
combined total of one-phase and two-phase commits
{(fongword, C).

Count of transactions aborted. Combined total of
planned and unplanned aborts (longword, C).

Count of transactions ended. The number of times
the $END_TRANS has successfully completed
(longword, C).

Count of start remote (to a remote parent) branch
operations (longword, C).

Count of add remote (to a remote subordinate
parent) branch operations (longword, C).

Count of transactions with a duration of less than
1 second (longword, C).

Count of transactions with a duration of 1 to
2 (1.99) seconds (longword, C).

Count of transactions with a duration of 2 to
3 seconds (longword, C).

Count of transactions with a duration of 3 to
4 seconds (longword, C).

Count of transactions with a duration of 4 to
5 seconds (longword, C).

Count of transactions with a duration greater than
5 seconds (longword, C).

16-6

e
N/

Q

Monitor Utility (MONITOR)
16.3 MONITOR VECTOR Command

16.3 MONITOR VECTOR Command

The MONITOR VECTOR command displays the number of 10-millisecond
clock ticks per second in which one or more vector consumers have been
scheduled on each currently-configured vector processor in the system.
Because the VMS operating system schedules vector consumers only on
those processors identified as “vector present,” the VECTOR class output
never displays vector CPU time for those processors that are “vector
absent.”

Note that, because vector consumers can use either or both the vector
CPU and scalar CPU components of a vector-present processor, the vector
CPU time in the VECTOR class display is not a strict measure of the
actual usage of the processor’s vector CPU component. Rather, it indicates
the time during which a scheduled vector consumer has reserved both
vector CPU and scalar CPU components of the vector-present processor
for its own exclusive use. (For a more complete description of the vector
processing environment, see Chapter 2.)

Use this command as follows:

1 Invoke the MONITOR Utility by entering the DCL command
MONITOR. The utility then displays the following prompt:

MONITOR>

2 At the MONITOR prompt, enter the MONITOR VECTOR command.
The format, description, and an example of this command follow.

FORMAT

MONITOR VECTOR

Qualifiers

/qualifierf,...]
One or more qualifiers, described as follows:

Class-name qualifiers

/ALL

Specifies that a table of all available statistics (current, average, minimum,
and maximum) is to be included in the display and summary output. For
summary output, this qualifier is the default for all classes; otherwise,

it is the default for all classes except CLUSTER, MODES, PROCESSES,
STATES, SYSTEM, and VECTOR.

/AVERAGE

Selects average statistics to be displayed in a bar graph for display and
summary output.

/CURRENT

Selects current statistics to be displayed in a bar graph for display
and summary output. The /CURRENT qualifier is the default for the
CLUSTER, MODES, STATES, SYSTEM, and VECTOR classes.

16-7

Monitor Utility (MONITOR)
16.3 MONITOR VECTOR Command

/MAXIMUM

Selects maximum statistics to be displayed in a bar graph for display and
summary output.

/MINIMUM

Selects minimum statistics to be displayed in a bar graph for display and
summary output.

DESCRIPTION

Example

MONITOR>

Vector

Vector
Vector
Vector
Vector

The VECTOR class consists of the data item Vector Scheduled Rate,
which is represented by a display of statistics that show the rates of 10-
millisecond clock ticks per second during which vector consumers have
been scheduled on each vector-present CPU.

MONITOR VECTOR
VAX/VMS Monitor Utility
VECTOR PROCESSOR STATISTICS

Fm———— + on node SAMPLE

| CUR | 12-JUN-1991 22:52:42

te———— +
Consumers Scheduled 0 25 50 75 100

i T e e T +

Present CPU ID O 13| #*xk%*
Absent CPU ID 1 |
Absent CPU ID 2 |
Present CPU ID 4 S| KAk k ok ok Kok ok ok ok Kk Kok ok kK ok ok

| |

l
! \ |
| | |
| | !
f \ |
| | |
T i S e +
This example shows the VECTOR class display for a multiprocessing
system containing two vector-present processors, CPU 0 and CPU 4.
Displayed statistics represent rates of 10-millisecond clock ticks per
second. For an average of 13 ticks per second over the last collection
interval, vector consumers have been scheduled on CPU 0. For an average

of 58 ticks per second over the last collection interval, vector consumers
have been scheduled on CPU

(

?/

C

\

Monitor Utility (MONITOR)
16.4 VECTOR Class Record

16.4 VECTOR Class Record

The VECTOR class record contains data describing the time during which
vector consumers have been scheduled on a vector-present processor. Its
record type number is 23. A VECTOR class record is of variable length
and depends on the number of active processors in the system. Assuming
all processors are active, MONITOR calculates its size by adding the size
of the class header and the data block, as follows:

13 + (5 * MNR_SYI$B_VPCPUS)

Figure 16-2 illustrates the format of a VECTOR class record; Table 16-2
describes the contents of each of its fields.

Figure 16-2 VECTOR Class Record Format

Class Header

(13 Bytes)
CPUID |MNR_VEC$B_CPUID
Ticks MNR_VEC$L_TICKS
T : T

ZK-1942A-GE

16-9

Monitor Utility (MONITOR)
16.4 VECTOR Class Record

Table 16—2 Descriptions of VECTOR Class Record Fields

Field Symbolic Offset Contents

CPU ID MNR_VEC$B_CPUID Identification of the processor from which the data has been
collected (1 byte).

Ticks MNR_VECS$L_TICKS Number of 10-millisecond clock ticks in which a vector

consumer has been scheduled on this processor (1 longword).

To support the VECTOR class, MONITOR appends the records in
Table 163 to the system information record.

Table 16—-3 Descriptions of Additions to System Record Fields

Field Symbolic Offset Contents
VPCPUs MNR_SYI$B_VPCPUS Number of vector-present processors in the current system
(1 byte).
VP Conf MNR_SYI$L_VPCONF Bit mask identifying those processors in the configuration that

are vector-present processors (1 longword).

16-10

C

1 7 Network Control Program Utility (NCP)

This chapter describes new NCP line and circuit name support for

VAXft 3000 systems and for two new Ethernet/820 controllers. See the
VMS Version 5.4 Release Notes for more information about these and other
hardware components that are new or enhanced for Version 5.4 of the
VMS operating system.

Line and Circuit Name Support for VAXft 3000 Systems

The VMS Network Control Program Utility (NCP) supports the following
new line and circuit name for VAXft 3000 systems (the controller number
can be 0 or a positive number):

KFE-<controller number>

When you enter NCP commands from a VAXft 3000 system connected to
your DECnet—VAX network, the KFE-n line and circuit name is displayed,
as follows:

$ RUN SYS$SYSTEM:NCP
NCP> SHOW KNOW LINE

Line Volatile Summary as of 31-AUG-1990 12:50:03
Line State
KFE-0 on

$ RUN SYS$SYSTEM:NCP
NCP> SHOW KNOW LINE

Circuit Volatile Summary as of 31-AUG-1990 12:52:03

Loopback Adjacent
Circuit State Name Routing Node
KFE-0 on 8.999 (JUPE)

Line and Circuit Names for New Ethernet/820 Controllers

The VMS Network Control Program Utility (NCP) now supports new line
and circuit names for the following Ethernet/820 controllers. (See the VMS
Version 5.4 Release Notes for a complete description of each new controller.)

e DEMNA controller—The NCP line and circuit name for the DEMNA
controller is as follows:

MNA-<controller number>
For example:

MNA-O0 (for EXAn)
MNA-1 (for EXBn)

17-1

Network Control Program Utility (NCP)
17.2 Line and Circuit Names for New Ethernet/820 Controllers

17-2

Second Generation Ethernet Controller (SGEC)—The NCP line and
circuit name for the SGEC is as follows:

ISA-<controller number>
For example:

ISA-0 (for EZAn)
ISA-1 (for EZBn)

C

o

1 8 VMS Volume Shadowing Phase I

Volume shadowing is the process of maintaining multiple copies of the
same data on two or more disk volumes. This duplication of data provides
greater data availability and faster data accessibility. Volume shadowing
provides high availability by insuring against data loss resulting from
media deterioration or through controller or device failure. When data

is recorded on more than one disk volume, you have access to critical
data even when one volume is unavailable. Disk input/output operations
continue with the remaining members of the shadow set.

The system can also find data more quickly because it can search more
than one disk. Because a shadow set is made up of multiple disks
containing the same data, the shadow set can use the additional read
heads to respond to multiple read requests at the same time. In addition,
when normal media deterioration renders sections of a volume unreadable,
systems with volume shadowing can read the duplicate data and copy it to
the failing volume to repair data.

Before Version 5.4, the VMS operating system supported only phase I
volume shadowing (see the VAX Volume Shadowing Manual). This type
of shadowing provides centralized shadowing using HSC controllers with
compatible DSA disks. Phase I shadowing is limited to CI configurations
on a single system or a VAXcluster.

VMS Volume Shadowing phase II supports the following:

® Clusterwide shadowing of all MSCP-compliant DSA disks having the
same physical geometry (having the same number of logical blocks) on
a single system or located anywhere in a VAXcluster system.

Volume shadowing phase II supports clusterwide shadowing of all
DSA devices. Phase II is not limited to HSC-controlled disks but
extends volume shadowing capabilities to all DSA disks including local
adapters, all DSSI (RF series) disk devices on any VAX computer, all
interfaces (including but not limited to the KFQSA interface), and
across MSCP servers.

¢ Distributed, not centralized, shadowing

Volume shadowing phase II creates and maintains virtual units

in a distributed fashion on each node in the cluster. Phase II
supports shadowing on a single system or in a VAXcluster system
where interprocessor communication is carried out over a computer
interconnect (CI), Digital small systems interconnect (DSSI), mixed-
interconnect configuration, or the Ethernet. Thus, volume shadowing
provides fault tolerance resulting from disk media errors across the
full range of VAX processors and configurations.

¢ Shadowing of the system disk and Files—11 On-Disk Structure Level 2
(ODS2) data disks

¢ Shadowing capabilities across different controllers.

VMS Volume Shadowing Phase I

18-2

Shadow set member units can be located on different controllers and
VMS MSCP servers.

¢ Shadowing capabilities with mixed phases

It is possible to use both phase I and phase II shadowing on the
same node at the same time. You can also mix phase I and phase II
shadowing in a VAXcluster system.

See the new VMS Volume Shadowing Manual for complete information
about phase II volume shadowing.

Part 4: Programming Features

This part contains the following chapters:

Chapter 19, VMS Debugger

Chapter 20, Linker Utility (LINK)

Chapter 21, Utility Routines: MAIL

Chapter 22, System Services

Chapter 23, Run-Time Library Routines

Chapter 24, VMS Record Management Services

Chapter 25, 1/0 Driver Support

Chaptér 26, System Dump Analyzer Utility (SDA)

Chapter 27, Device Support

Chapter 28, VAX Text Processing Utility (VAXTPU)

Chapter 29, VAX RMS Journaling: Support for DECditm Services
Chapter 30, VMSINSTAL

Chapter 31, DECwindows and CDA Programming Features

C

C

C

1 9 VMS Debugger

This chapter describes enhancements to the VMS Debugger for Version
5.4 of the VMS operating system. These enhancements, which let you
debug vectorized programs (programs that use VAX vector instructions),
are described in more detail in the revised VMS Debugger Manual.

Debugging Vectorized Programs

You can now perform the following debugging tasks using either the
debugger’s command interface or the DECwindows interface:

Display information about the availability and use of the vector
processor on your system.

Control and monitor the execution of vector instructions with
breakpoints, watchpoints, and so on.

Specify built-in symbols for the vector registers (%VO0 through %V15)
and the vector control registers (%VCR, %VLR, and %VMR).

Examine the values contained in the vector registers and in the vector
control registers; deposit values into those registers.

Display vector instructions using a screen-mode instruction display.
Examine and deposit vector instructions and their operands.

Perform masked operations on vector registers to display only certain
register elements or override the masking associated with a vector
instruction.

Using the EXAMINE command, specify composite address expressions
of a complex form, such as what might be appropriate for a vectorized
program. (Note that this feature is not restricted to vectorized
programs.)

Display the decoded results of vector floating-point exceptions.
Control synchronization between the scalar and vector processors.

Save and restore the current vector state when using the CALL
command to execute a routine that might affect the vector state.

Display vector register data using a screen-mode display.

Command Interface: New and Enhanced Commands and Qualifiers

The following list identifies new and enhanced commands and qualifiers
for the debugger’s command interface:

CALL/[NO]JSAVE_VECTOR_STATE
CANCEL BREAK/VECTOR_INSTRUCTION

19-1

VMS Debugger

19.2 Command Interface: New and Enhanced Commands and Qualifiers

CANCEL TRACE/VECTOR-INSTRUCTION
EXAMINE/FMASK, /TMASK, /OPERANDS

SET BREAK/VECTOR_INSTRUCTION,
/INSTRUCTIONI[=(opcodel,...])]

SET STEP VECTOR_INSTRUCTION, INSTRUCTION[=(opcodel,...])]

SET TRACE/VECTOR_INSTRUCTION,
/INSTRUCTIONI[=(opcodel,...])]

SET VECTOR_MODE [NOJSYNCHRONIZED

SHOW PROCESS

SHOW VECTOR_MODE

STEP/VECTOR_INSTRUCTION, /INSTRUCTION{=(opcodel,.../)]
SYNCHRONIZE VECTOR_MODE

See the VMS Debugger Manual for complete information about these
commands and qualifiers.

19.3 DECwindows Interface: Enhancements to Menus and Dialog Boxes

The following list identifies new features for the debugger’s DECwindows
interface:

19-2

[

The Control menu has a new menu item labeled Synchronize Vector
Processor. This item is the DECwindows equivalent of the command
SYNCHRONIZE VECTOR_MODE.

In the Step dialog box, the target (upper right) option menu has a new
entry labeled the next vector instruction.

In the Break dialog box, the target (upper right) option menu has a
new entry labeled every vector instruction.

The Call dialog box has a new toggle button labeled Save Vector State.

The Examine Variable dialog box has a new option menu labeled Mask.

This menu has three options labeled None, Tmask, and Fmask.

The Examine Code dialog box has a new option menu labeled With
Operand Values. This menu has 7 options labeled None, Brief, Full,
Brief with Tmask, Brief with Fmask, Full with Tmask, and Full with
Fmask.

The Examine Address or Register dialog box has a new option menu
labeled Mask. This menu has three options labeled None, Tmask, and
Fmask.

The Other Attributes dialog box has a new toggle button labeled
Scalar-Vector Synchronization. This button is equivalent to the
command SET VECTOR_MODE [NOISYNCHRONIZED.

See the online help that is available from the debugger’s DECwindows
interface for complete information about these features.

i

N ,_/’

O

(0 Linker Utility (LINK)

With Version 5.4 of the VMS operating system, you can now specify larger
page sizes by using the new /BPAGE qualifier with the LINK command.

/BPAGE affects the allocation of image sections. Because image sections
must be allocated on a page boundary, specifying a larger page size causes
the origin of image sections to be increased to the next multiple of that
size. /BPAGE affects only the construction of the image (shareable or
executable), not the linker itself or any page-size dependencies in the
linked program. An image linked to a larger page size generally runs
correctly on a current VMS system, but it might consume more virtual
address space. In addition, linking a shareable image to a larger page size
can cause the value of transfer vector offsets to change if they were not
allocated in page 0 of the image.

The format for using /BPAGE is as follows:
LINK [/BPAGE [=n]]

If you do not specify /BPAGE with the LINK command, the default 512-
byte page is used.

If you specify /BPAGE without a page size value (n is not specified), the
image is built using 8-kilobyte pages.

If you specify a page size value (n is specified), the image is built using

that value for the page size. Page size can be any size from 512 bytes to
65 kilobytes. The value is specified as the exponent of a power of 2. For
example, when n equals 9, the page size is 512 bytes; when n equals 13,
the page size is 8 kilobytes.

20-1

O

o

21 Utility Routines: MAIL

The callable interface to the VMS Mail Utility (MAIL) lets you create
applications that perform various Mail Utility functions, such as sending
mail messages to users on your system. In addition, your applications can

communicate with users on remote nodes connected to your system with
DECnet-VAX.

Table 21-1 summarizes these new Mail Utility routines. See the revised
VMS Utility Routines Manual for complete information.

Table 21-1 Mail Utility Routines

Routine Description

Mail File Context

MAIL$MAILFILE_BEGIN Initiates mail file processing
MAIL$MAILFILE_CLOSE Closes a mail file
MAIL$MAILFILE_COMPRESS Compresses a mail file
MAILSMAILFILE_END Terminates mail file processing
MAILSMAILFILE_INFO_FILE Obtains information about the mail file
MAIL$SMAILFILE_MODIFY Changes the wastebasket folder name
MAIL$MAILFILE_OPEN Opens a mail file

MAILSMAILFILE_PURGE_WASTE Purges a mail file

Message Context

MAILSMESSAGE_BEGIN Initiates message processing

MAILSMESSAGE_COPY Copies messages

MAILSMESSAGE_DELETE Deletes messages

MAILSMESSAGE_END Terminates message processing

MAILSMESSAGE_GET Retrieves a message

MAILSMESSAGE_INFO Obtains information about a specified message

MAILSMESSAGE_MODIFY Identfies a message as replied, new, or
marked

MAILSMESSAGE_SELECT Selects a message or messages from the

currently open mail file

(continued on next page)

21-1

Utility Routines: MAIL

21-2

Table 21-1 (Cont.) Mail Utility Routines

Routine

Description

Send Context

MAILSSEND_ABORT
MAIL$SEND_ADD_ADDRESS
MAILSSEND_ADD_ATTRIBUTE
MAILSSEND_ADD_BODYPART
MAIL$SEND_BEGIN
MAIL$SEND_END
MAILSSEND_MESSAGE

Aborts a send operation

Adds an addressee to the address list
Constructs the message header
Constructs the body of the message
Initiates send processing

Terminates send processing

Sends a message

User Context

MAILSUSER_BEGIN
MAILSUSER_DELETE_INFO
MAIL$USER_END
MAILSUSER_GET_INFO

MAIL$USER_SET_INFO

Initiates user profile context
Deletes a user profile entry
Terminates user profile context

Retrieves information about a user from the
user profile

Adds or modifies a user profile entry

)
o

Q

22 System Services

The VMS Version 5.4 operating system includes new and modified system
services that support the following.

e DECdtm services
* Volume initialization
e System security enhancements

C\ * Vector processing

* VMS Volume shadowing

The information in this chapter is organized as follows:

* Section 22.1 lists and briefly describes system services that are new for
Version 5.4 of the VMS operating system.

e Section 22.2 describes how to use specific transaction management
services within the DECdtm environment.

O ¢ Section 22.3 describes how to use the $INIT_VOL system service.

* Section 22.4 includes the complete format and description of each new
system service.

* Section 22.5 describes modifications to existing system services (for
example, the addition of new item codes and flags).

¢ Section 22.6 contains new information about using system services to
create site-specific loadable images.

C .

Summary of New System Services

Table 221 lists the system services that are new for the VMS Version 5.4
operating system.

Table 22-1 New VMS Version 5.4 System Services

System Service Description Function

DECdtm Services

$ABORT_TRANS Abort Transaction Aborts a transaction asynchronously;
can be called before the transaction is
committed

$ABORT_TRANSW Abort Transaction and Wait Synchronous equivalent of $ABORT _
TRANS

0} (continued on next page)

221

22.2

System Services

22.1 Summary of New System Services

Table 22-1 (Cont.) New VMS Version 5.4 System Services

System Service

Description

Function

DECdtm Services

$END_TRANS

$END_TRANSW

$START_TRANS

$START_TRANSW

End Transaction
End Transaction and Wait

Start Transaction

Start Transaction and Wait

Commits a transaction asynchronously

Synchronous equivalent of
$END_TRANS

Starts a transaction (asynchronously) by
allocating a transaction identifier (TID)
and establishing the internal structures
that define a transaction

Synchronous equivalent of
$START_TRANS

Volume Initialization

$INIT_VOL

Initialize Volume

Formats a disk or magnetic tape volume
and writes a label on the volume

System Secutrity

$FORMAT_AUDIT

$HASH_PASSWORD

Format Security Audit Event
Message

Hash Password

Converts a security auditing event
message from binary format to ASClI
text and filters information considered
too sensitive to display

Applies a hash algorithm to an ASCII
password string and returns a quadword
hash value that represents the encrypted
password

Vector Processing

$RELEASE_VP
$RESTORE_VP_EXCEPTION

$RESTORE_VP_STATE

$SAVE_VP_EXCEPTION

Release Vector Processor

Restore Vector Processor Exception

State
Restore Vector State

Save Vector Processor Exception
State

Terminates the current process’s status
as a vector consumer

Restores the saved exception state of
the vector processor

Allows an AST routine or condition
handler to restore the vector state of the
mainline routine

Saves the pending exception state of the
vector processor

Using Transaction Management System Services

Application programs can call the VMS transaction management system
services to delimit the set of operations comprising a distributed
transaction. These system services can then guarantee consistent
execution of the transaction.

22-2

C

C

C

System Services
22.2 Using Transaction Management System Services

Chapter 3 provides a complete description of DECdtm services and
discusses the concept of atomicity in distributed applications.

The transaction management system services provided by the DECdtm
services include the following:

e Start Transaction ($START _TRANS)

* Start Transaction and Wait ($START TRANSW)
¢ End Transaction (SEND _TRANS)

¢ End Transaction and Wait ($END_TRANSW)

¢ Abort Transaction (SABORT_TRANS)

* Abort Transaction and Wait (SABORT_TRANSW)

You must call these services in your application program according to the
syntax rules for the programming language that you are using. Refer to
the appropriate language reference manual for more information on using
system services.

Transaction Processing System Model

In Digital’s model for transaction processing, several components work
together to execute atomic transactions.

At the end-user level, user-written application programs define the task
to be accomplished, such as query, update, and insertion. An application
program (AP) also specifies how transactions are to be executed. The
application programs initiate transaction execution using calls to VMS
system services.

At the system level, the execution of the transaction depends on the
interaction of resource managers (RMs) and transaction managers (TMs).

The interaction of these components is shown in Figure 22-1.

Figure 22—-1 Transaction Processing Components

(@

Database
—

ZK-1869A-GE

The key function of the DECdtm services is to act as transaction
manager. A transaction manager supports the transaction management
system services that are issued from application programs to delimit

22-3

System Services
22.2 Using Transaction Management System Services

transactions. To complete or abort a transaction, the transaction
manager sends instructions to resource managers and other transaction
managers involved in the transaction. In this way, a transaction manager
coordinates the actions of a transaction.

Through calls to system services, application programs communicate
directly with the DECdtm services. Additionally, these programs can use
the services provided by a resource manager.

A resource manager is a software product that manages shared access

to a set of recoverable resources on behalf of applications programs. In

this context, recoverable means that all updates to the resources on

behalf of the transaction can be made permanent or can be undone.

Recoverable resources typically include files or databases. The resource

manager participates in the two-phase commit protocol to commit or abort ™
a transaction. L ;/5

22.2.2 Transaction Management
The responsibilities of a transaction manager include the following:
¢ Delimit transactions
* Track participating transaction managers and resource managers
¢ Ensure that transactions either commit or abort @

¢ Assist in recovery of resources after failures

For every transaction that it coordinates, the transaction manager in
the DECdtm services maintains a list of the transaction’s participants.
Participants can include:

¢ Resource managers on a local node, spanning one more or processes

¢ Transaction managers on other nodes within a network, which might -
also have associated resource manager and transaction manager (/
participants ‘

The transaction manager uses this list of participants to execute the
two-phase commit protocol. During the execution of this protocol, each
participating transaction manager writes transaction information to a

log file. A log file contains a permanent record of transaction states.

By having access to a log file, a transaction manager can resume the
execution of the two-phase commit protocol after recovering from a system
failure. When executing the two-phase commit protocol, the transaction
manager tells the transaction’s participants whether to commit or abort a
transaction.

22.2.3 Starting a Transaction

Transaction management services demarcate transactions. To indicate
the start of transaction operations, an application program calls @
$START_TRANS or its synchronous equivalent, $START TRANSW.

224

System Services
22.2 Using Transaction Management System Services

The application program should make a call to $START_TRANS prior to
the code making up the transaction operations and prior to any code that
accesses recoverable resources or remote nodes. In response to a call to
$START TRANS, the transaction manager component of the DECdtm
services generates a unique transaction identifier (TID) for the transaction
so that it can keep track of the transaction. The transaction manager
uses the TID to identify all actions performed by resource managers and
transaction managers on behalf of the transaction.

For each process on which they are used, the DECdtm services maintain
the concept of a current transaction. The transaction that is started using
$START_TRANS is considered the process default, or current, transaction.
Alternatively, the NONDEFAULT flag can be set when $START_TRANS is
called to establish a nondefault transaction.

Thus, when an application program that is using a resource manager
such as RMS Journaling makes a call to $START_TRANS, the TID of
the current transaction is used by default. For RMS Journaling, unless a
specific TID is specified (using the XAB$_TID item code), RMS associates
the record stream with the default, current transaction.

The following FORTRAN code fragment demonstrates the use of
$START_TRANSW. The program first determines the accounts to be
credited and debited and the amount to be transferred. It then calls
$START_TRANSW to indicate to the transaction manager that it is
beginning the set of debit/credit operations that make up the distributed
transaction.

INTEGER*4 STATUS, TID (4)
INTEGER*2 IOSB (4)

INTEGER*4 SYSS$SSTART TRANSW

GET_INPUT (’Account to debit’, DEBIT_ ACCT)
GET INPUT (’Account to credit’, CREDIT ACCT)
GET_INPUT(’AmOunt to transfer’, TRANSFER_AMT)

STATUS=SYS$START TRANSW (%VAL (0),

1 VAL (0),
2 10SB,

3 SVAL (0),
4 SVAL (0),
5 TID)

IF (STATUS) STATUS = IOSB (1)
IF (.NOT.STATUS) GOTO 100

STATUS = DEBIT_ ACCOUNT (
1 DEBIT_ACCT, TRANSFER AMT, SREF (0))

STATUS = CREDIT_ACCOUNT (
1 CREDIT_ACCT, TRANSFER_AMT, SREF (0))

22-5

System Services
22.2 Using Transaction Management System Services

22.2.4 Completing a Transaction

The processing of a transaction completes when a call is made to the
DECdtm system services to either commit or abort. The system services
that commit a transaction are $END_TRANS and its synchronous
equivalent, SEND_TRANSW. The services that abort a transaction are
$ABORT_TRANS and its synchronous equivalent, $ABORT_TRANSW.
Upon receiving one of these calls, the DECdtm services inform all
participants to commit or abort.

The following FORTRAN code fragment demonstrates the use of
$END_TRANSW. After the final operation of the program is issued,
the program calls $END_TRANSW to commit the transaction.

STATUS = CREDIT ACCOUNT (

1 CREDIT ACCT, TRANSFER AMT, SREF (0))
STATUS = SYSSEND TRANSW (%VAL (0),

1 $VAL (0),

2 I0SB,

3 $VAL (0),

4 $VAL (0),

5 TID)

IF (STATUS) STATUS = TOSB (1)
IF (.NOT.STATUS) GOTO 100

END

22.2.5 Calling a Planned Abort

$ABORT _TRANS enables applications to implement a planned abort. If
errors occur during the execution of the transaction processing, a call
can be made to ABORT_TRANS to end the transaction so that previous
changes do not become permanent in the accessed database.

The following code fragment is from a COBOL application that calls
$ABORT_TRANSW as part of its error-handling:

DISPLAY "Calling subtransaction to FETCH record from database." LINE PLUS 1.

CALL "ERASE_EAST" USING WS-EMP-KEY WS-EMP-RECORD WS-STATUS TID.
IF WS-STATUS IS NOT EQUAL TO "SUCCESS"

PERFORM ABORT-GLOBAL-TRANSACTION

GO TO END-MOVE-EAST-WEST.

ABORT-GLOBAL~TRANSACTION.

22-6

System Services
22.2 Using Transaction Management System Services

The employee name field contains information about the error
detected in the subprogram.

DISPLAY WS-EMP-NAME LINE PLUS 1.
DISPLAY "Aborting global transaction.”" LINE PLUS 1.

* abort (rollback) global transaction
CALL "SYSSABORT_TRANSW" USING

OMITTED

OMITTED

BRY REFERENCE IOSB

OMITTED

OMITTED

BY REFERENCE TID

GIVING WS-SYS-STATUS.

22.2.6 Example of Using Transaction Management System Services

Example 22-1 is a BLISS program that uses the transaction management
services to create two simple transactions. The first transaction is
committed, using SEND_TRANS. The second transaction is aborted,
using $ABORT_TRANS.

Example 22-1 Using Transaction Management Services

MODULE EXAMPLE (MAIN=EXAMPLE) =
BEGIN

LIBRARY' SYSSLIBRARY: STARLET’ ;
ROUTINE EXAMPLE =

BEGIN
LOCAL
STATUS,
IOSB : VECTOR [4, WORD],
TID : $BBLOCK [DTIS$S TID];

T+
! Start a nondefault process transaction

-

(1] STATUS = $START TRANSW (EFN =1,
FLAGS = (DDTM$M NONDEFAULT OR
DDTMSM_SYNC) ,
IOSB = IOSB,
ASTADR = O,
ASTPRM = O,
TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_ SYNCH) THEN
STATUS = .IOSB [0];
IF NOT .STATUS THEN RETURN (.STATUS);

f+
! Commit the transaction

[

(continued on next page)

22-7

System Services

22.2 Using Transaction Management System Services

O

Example 22-1 (Cont.) Using Transaction Management Services

(2] STATUS = SEND_TRANSW (EFN =

1,

FLAGS = DDTMS$M_SYNC,
I0SB = IOSB,

ASTADR = 0,

ASTPRM = 0,

TID = TID);

IF .STATUS AND (.STATUS NEQU SS$ SYNCH) THEN

STATUS = .IOSB [0];

IF NOT .STATUS THEN RETURN (.STATUS);

1+

! Start another nondefault process transaction

©® STATUS = $START TRANSW (EFN

=1, N S

22-8

FLAGS = (DDTMSM NONDEFAULT OR
DDTMSM_SYNC),

I0OSB = IOSB,

ASTADR = 0,

ASTPRM = 0,

TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN
STATUS = .IOSB [0];
IF NOT .STATUS THEN RETURN (.STATUS);

I+
! Abort the transaction

(4] STATUS = $ABORT TRANSW (EFN = 1,
FLAGS = DDTMSM SYNC,
I0SB = I10SB,
ASTADR = 0,
ASTPRM = 0,
TID = TID);

IF .STATUS AND (.STATUS NEQU SS$_SYNCH) THEN
STATUS = .IOSB ([0];
RETURN (.STATUS) ;
END;

END
ELUDOM

© A call to $START_TRANS. The DECdtm transaction manager responds
to this call by creating a transaction identifier.

@ To commit the transaction, the application calls $END_TRANS.

© To start another transaction, the application makes another call to
$START_TRANS.

O To abort the transaction, the application calls $ABORT_TRANS.

O

C

System Services

22.3 Using the Initialize Volume ($INIT_VOL) System Service

22.3 Using the Initialize Volume ($INIT_VOL) System Service

O Examples

Initializing a volume writes a label on the volume, sets protection and
ownership for the volume, formats the volume (depending on the device
type), and overwrites data already on the volume.

Normally, you initialize a volume from the DCL command stream by
using the INITIALIZE command. However, you can also use the Initialize
Volume ($INIT_VOL) system service to enable a process to initialize a
volume from within a program.

When you call the $INIT_VOL system service, you must specify a device
name and a new volume name. You can also use the itmlst argument
of $INIT_VOL to specify options for the initialization. For example, if
you want data compaction to be performed, you can specify the INIT$_
COMPACTION item code.

Before initializing the volume with $INIT_VOL, be sure you have placed
the volume on the device and started the device (by pressing the START or
LOAD button).

The default format for files on disk volumes is called Files—11 Structure
Level 2. Files—11 Structure Level 1 format is used by other Digital
operating systems, including RSX-11M, RSX-11M-PLUS, RSX-11D
and IAS. For more information, see the Guide to VMS Files and Devices.

The following example illustrates a call to $INIT_VOL from VAX C. The
call is equivalent to the following DCL command:

INITIALIZE/DENSITY=6250 MUAO: USERO1

i #include <descrip.h>
#include <initdef.h>

‘::) struct item descrip 3
: {

unsigned short buffer_ size;
unsigned short item_code;

void *buffer address;

unsigned short *return_length;

b

main ()

{

unsigned long
density_code,

status;

SDESCRIPTOR (drive dsc, "MUAO:");
SDESCRIPTOR (label dsc, "USERO1");

struct

{

struct item descrip 3 density item;
long terminator;
} init_itmlst;

C %
** Initialize the input item list.

*/

22-9

System Services
22.3 Using the Initialize Volume ($INIT_VOL) System Service

density_ code = INITSK DENSITY 6250 BPI;

init itmlst.density item.buffer size = 4;

init itmlst.density item.item code = INITS$ DENSITY;

init itmlst.density item.buffer address = &density_code;

init itmlst.terminator = 0;

/*

**% Initialize the volume.

*/

status = SYSSINIT VOL (&drive dsc, &label dsc, &init itmlst);

/%

** Report an error if one occurred.

*/

if ((status & 1) !=1)

LIB$STOP (status); 7

} .~

The following example illustrates a call to $INIT VOL from VAX BASIC.
The call is equivalent to the following DCL command:

INITIALIZE/DATA_CHECK=READ DJA21: USERVOLUME

E OPTION TYPE = EXPLICIT
“INCLUDE ’$INITDEF’ %FROM %LIBRARY Ci::
EXTERNAL LONG FUNCTION SYSSINIT VOL

RECORD ITEM DESC
VARIANT
CASE
WORD BUFLEN
WORD ITMCOD
LONG BUFADR
LONG LENADR

CASE -
LONG TERMINATOR N
END VARIANT S
END RECORD
DECLARE LONG RET STATUS, &
ITEM DESC INIT_ITMLST(2)
! Initialize the input item list.
INIT ITMLST(0)::ITMCOD = INIT$ READCHECK
INIT ITMLST(1)::TERMINATOR = 0
! Initialize the volume.
RET STATUS = SYSSINIT VOL ("DJA21:" BY DESC, "USERVOLUME" BY DESC,
INIT ITMLST() BY REF)
22.4 Descriptions of New System Services
This section contains complete descriptions of the system services new for @

Version 5.4 of the VMS operating system.

22-10

SYSTEM SERVICE DESCRIPTIONS
$ABORT_TRANS

$ABORT_TRANS Abort Transaction

Aborts a transaction; it can be called before the transaction is committed.

FORMAT SYS$ABORT_TRANS [efn],[flags] ,iosb ,[astadr]
J[fastprm] [tid]
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.
ARGUMENTS efn
VMS usage: ef_nhumber
type: longword (unsigned)
access: read only

mechanism: by value

Number of the event flag to be set. The efn argument is a longword
containing this number; however, $ABORT_TRANS uses only the low-
order byte. If you do not specify the efn, SABORT_TRANS uses the
default value 0.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for SABORT_TRANS. The flags argument is a
longword bit mask that is the logical OR of each bit set, in which each bit
corresponds to an option. The $DDTMDEF macro defines a symbolic name
for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in
Table 22-2.

22-11

SYSTEM SERVICE DESCRIPTIONS

$ABORT_TRANS

22-12

Table 22-2 $ABORT_TRANS Operation Flag

Flag Description

DDTM$M_SYNC Indicates successful synchronous completions by returning
SS$_SYNCH. When synchronous completion is successful,
the completion AST address is not called, the IOSB is not
written, and the event flag is not set.

iosb

VMS usage: io_status_block
type: quadword (unsigned)
access: write only

mechanism: by reference

I/O status block (IOSB) to receive the final completion status of the
request. The iosb argument is the address of the quadword I/O status
block.

The following diagram shows the structure of the I/O status block:

31 15 0
Reserved by Digital Condition Value
Reserved by Digital
ZK-1224A-GE
astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed. The astadr argument is the address
of the entry mask of this routine. In the case of synchronous completion,
the call might not take place. Refer to the description of DDTM$M_SYNC
in Table 22-2.

If you specify astadr, the AST routine executes at the same access mode
as the caller of the $ABORT_TRANS service.

astprm

VMS usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value
AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

C

SYSTEM SERVICE DESCRIPTIONS
$ABORT_TRANS

tid

VMS usage: transaction_id

type: octaword (unsigned)
access: read only

mechanism: by reference

Pointer to the transaction identifier (TID) structure that designates the
transaction to be aborted. The default value for this parameter is the
current transaction.

DESCRIPTION

The Abort Transaction service aborts a specific transaction by invalidating
the transaction identifier (TID) and instructing all resource managers
involved to nullify all the actions of the transaction. This system service
can be called by an application program or by any resource manager or
transaction manager participating in the execution of the transaction.

For a single-node transaction, $ABORT_TRANS can be successfully called
any time before the transaction is committed. A transaction is considered
to be committed when the commit record is written to the transaction
log file. A committed transaction executes in its entirety. When a
transaction is aborted, the transaction manager orders all participants

in the transaction to roll back any changes made to database files. Thus,
none of the intended actions of the distributed transactions is made
permanent.

For distributed transactions, $ABORT_TRANS can be successfully called
from the coordinating (home) node any time before the transaction

is committed and from the participating (remote) node only until the
participant transaction manager is prepared.

Required Privileges
None.

Required Quota
ASTLM

Related Services
$END_TRANS, $START_TRANS

CONDITION
VALUES
RETURNED

SS$_NORMAL The operation was successfully queued.

SS$_SYNCH The synchronous operation completed successfully.

SS$_ACCVIO The I0SB or TID cannot be read by the caller, or the
IOSB cannot be written by the caller.

SS$_BADPARAM The operations flags are invalid.

SS$_EXASTLM The process has exceeded its AST limit quota.

SS$_ILLEFC The efn argument specifies an illegal flag number.

22-13

SYSTEM SERVICE DESCRIPTIONS

$ABORT_TRANS

SS$_INSFMEM There is insufficient system dynamic memory for the
operation.

SS$_NOCURTID No default TID is defined.

SS$_NOSUCHTID The designated TID is unknown.

SS$_WRONGSTATE The transaction is in the wrong state for the attempted
operation.

CONDITION
VALUES
RETURNED IN
THE I/0O STATUS
BLOCK

22-14

Same as those returned in RO. A value of SS§_NORMAL returned in the
I/O status block indicates that the service completed successfully.

SYSTEM SERVICE DESCRIPTIONS
$ABORT_TRANSW

$ABORT_TRANSW Abort Transaction and Wait

Aborts a transaction; it can be called before the transaction is committed.

$ABORT_TRANSW completes synchronously; that is, it returns to the caller
after the request has completed.

For asynchronous completion, use the Abort Transaction (JABORT_TRANS)
service, which .aborts a transaction without waiting for the operation to
complete.

In all other respects, SABORT_TRANSW is identical to $ABORT_TRANS. For
all other information about the $ABORT_TRANSW service, refer to the section
on $ABORT_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to Introduction to VMS System Services.

FORMAT

SYS$SABORT_TRANSW [efn] ,[flags] ,iosb ,[astadr]
JJfastprm] ,[tid]

22-15

SYSTEM SERVICE DESCRIPTIONS
$END_TRANS

$END TRANS End Transaction

Commits a transaction.

FORMAT SYS$END _TRANS [efn] [flags] ,iosb ,[astadr]
J[astprm] ,[tid]
RETURNS VMS usage: cond_value)
type: longword (unsigned)
access: write only

mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS efn

VMS usage: ef_number

type: longword (unsigned)

access: read only

mechanism: by value

Number of the event flag to be set. The efn argument is a longword
containing this number; however, $SEND_TRANS uses only the low-order
byte. If you do not specify efn, SEND_TRANS uses the default value 0.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for SEND_TRANS. The flags argument is a
longword bit mask that is the logical OR of each bit set, in which each bit
corresponds to an option. The $DDTMDEF macro defines a symbolic name
for each flag bit.

DDTM$M_SYNC, the only flag currently defined, is described in
Table 22-3.

22-16

SYSTEM SERVICE DESCRIPTIONS

$END_TRANS
Table 22-3 $END_TRANS Operation Flag
Flag Description
DDTM$M_SYNC Indicates successful synchronous completions by returning

SS$_SYNCH. When synchronous completion is successful,
the completion AST address is not called, the IOSB is not
written, and the event flag is not set.

iosb

VMS usage: io_status_block
type: quadword (unsigned)
access: write only

mechanism: by reference

I/0 status block (IOSB) to receive the final completion status of the
request. The iosb argument is the address of the quadword I/O status
block.

The following diagram shows the structure of the I/O status block:

31 15 0
Reserved by Digital Condition Value
Reserved by Digital
ZK-1224A-GE
astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding

mechanism: by reference

AST service routine to be executed. The astadr argument is the address
of the entry mask of this routine. In the case of synchronous completion,
the call might not take place. Refer to the description of DDTM$M_SYNC
in Table 22-3.

If you specify astadr, the AST routine executes at the same access mode
as the caller of the $END TRANS service.

astprm

VMS usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value
AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

22-17

SYSTEM SERVICE DESCRIPTIONS

$END_TRANS

tid

VMS usage: transaction_id

type: octaword (unsigned)

access: read only

mechanism: by reference

Pointer to the transaction identifier (TID) structure that designates the
transaction to be committed. The default value for this parameter is the
current transaction.

DESCRIPTION

22-18

The End Transaction service instructs the DECdtm services to commit

a transaction. When $END_TRANS is called, the transaction manager
component of the DECdtm services implements the two-phase commit
protocol to inform all the transaction’s participants (any resource managers
and transaction managers involved in the transaction) to commit.

The first phase of the two-phase commit protocol is termed the prepare
phase. In the prepare phase, the transaction manager sends a prepare
message to all participants. The prepare message requests each
participating resource manager to vote on its ability to complete the
transaction processing actions. The transaction manager waits to receive
the results of the prepare message.

The participants must notify the transaction manager whether they have
succeeded or failed in performing their transaction processing work. If a
participating resource manager is able to prepare, it sends a “yes” vote to
the transaction manager. If the resource manager is unable to prepare,
it casts a “no” vote. If the resource manager fails before replying, the
transaction manager assumes a “no” vote.

When all participants have responded to the prepare request, the
transaction manager proceeds to the second phase, the commit phase.

If all of the participants have successfully completed the prepare phase
and voted “yes,” the transaction manager orders the participants to commit
the transaction. Each participating resource manager completes commit
processing for its transaction by writing a commit log record to its local
transaction log file. A distributed transaction is complete when all its
actions, such as changes to databases, are made permanent.

If an application calls $ABORT_TRANS or $ABORT_TRANSW or if any
of the participants have failed to prepare successfully, the transaction

is aborted. For example, a resource manager might fail to prepare
successfully due to a process failure, machine failure, or hardware
failure. In the abort phase, the transaction manager orders all remaining
participants to abort the transaction and roll back their transaction
processing work. Thus, none of the actions of the distributed transaction
is made permanent.

$END_TRANS returns a failure status (SS§_ABORT) if the prepare
phase does not complete successfully or if an error occurs that makes it
impossible to commit the transaction.

Required Privileges

None.

Required Quota
ASTLM

Related Services

SYSTEM SERVICE DESCRIPTIONS

$END_TRANS

$ABORT_TRANS, START_TRANS

CONDITION ,
VALUES SS$_NORMAL The operation was successfully queued.
RETURNED SS$_SYNCH The synchronous operation completed successfully.
SS$_ABORT The transaction aborted during processing.
SS$_ACCVIO The I0SB or TID cannot be read by the caller, or the
IOSB cannot be written by the caller.
SS$_BADPARAM The operations flags are invalid.
SS$_EXASTLM The process has exceeded its AST limit quota.
SS$_ILLEFC The efn argument specifies an illegal flag number.
SS$_INSFMEM There is insufficient system dynamic memory for the
operation.
SS$_NOCURTID No default TID is defined.
SS$_NOSUCHTID The designated TID is unknown.
SS$_WRONGSTATE The transaction is in the wrong state for the attempted
operation.
CONDITION Same as those returned in RO. A value of SS§_NORMAL returned in the
VALUES I/O status block indicates that the service completed successfully.
RETURNED IN
THE I/O STATUS
BLOCK

22-19

SYSTEM SERVICE DESCRIPTIONS

$END_TRANSW

$END_TRANSW End Transaction and Wait

Commits a given transaction. It returns a failure status (SS$_ABORT) if an
error occurs that makes it impossible the transaction to be committed.

$END_TRANSW completes synchronously; that is, it returns to the caller after
the request has actually completed.

For asynchronous completion, you use the End Transaction (SEND_TRANS)
system service, which commits a transaction and allocates a transaction
identifier without waiting for the operation to complete.

In all other respects, $END_TRANSW is identical to $END_TRANS.
For all other information about $END_TRANSW, refer to the section on
$END_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to Introduction to VMS System Services.

FORMAT

22-20

SYSSEND _TRANSW [efn] ,[flags] ,iosb ,[astadr]
J[astorm] ,[tid]

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_AUDIT

$FORMAT_AUDIT Format Security Audit Event

Message

Converts a security auditing event message from binary format to ASCII text
and filters information the user considers too sensitive to display.

FORMAT

SYS$FORMAT_AUDIT
[fmttyp] ,audmsg ,[outlen] ,[outbuf] ,[width] ,[trmdsc]
J[routin] [, fmtflg]

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS

N

fmttyp

VMS usage: longword_unsigned

type: longword (unsigned)

access: read only

mechanism: by value

Format for the message. The fmttyp argument is a value indicating
whether the security audit message should be in brief format, which is one
line of information, or full format. The default is full format. See the VMS
Audit Analysis Utility Manual for examples of formatted output.

Value Meaning

NSA$C_FORMAT_STYLE_BRIEF Use a brief format for the message.

NSA$C_FORMAT_STYLE_FULL Use a full format for the message.
audmsg

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor

Security auditing message to format. The audmsg argument is the
address of a character descriptor pointing to a buffer containing the binary
message that requires formatting.

22-21

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_AUDIT

outlen

VMS usage: word_unsigned
type: word (unsigned)
access: write only

mechanism: by reference

Length of the formatted security audit message. The outlen argument is
the address of the word receiving the final length of the ASCII message.

outbuf

VMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor
Buffer holding the formatted message. The outbuf argument is the
address of a descriptor pointing to the buffer receiving the message.

width

VMS usage: word_unsigned
type: word (unsigned)
access: read only

mechanism: by reference

Maximum width of the formatted message. The width argument is the
address of a word containing the line width value. The default is

80 columns.

trmdsc

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor

Line termination characters used in a full format message. The trmdsc
argument is the address of a descriptor pointing to the line termination
characters to insert within a line segment whenever the width is reached.

routin

VMS usage: longword_unsigned
type: procedure

access: read only

mechanism: by reference

Routine that writes a formatted line to the output buffer. The routin
argument is the address of a routine called each time a line segment
is formatted. The argument passed to the routine is the address of a
character string descriptor for the line segment.

When an application wants event messages in the brief format,
$FORMAT_AUDIT calls the routine twice to format the first event
message. The first time it is called, the routine passes a string containing
the column titles for the message. The second and subsequent calls to
the routine pass the formatted event message. By using this routine
argument, a caller can gain control at various points in the processing of
an audit event message.

22-22

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_AUDIT

fmtflg

VMS usage: longword (unsigned)
type: mask_longword
access: read only

mechanism: by value

Determines the formatting of certain kinds of audit messages. The fmtfig
argument is a mask specifying whether sensitive information, such as
passwords, should be displayed or column titles built for messages in brief
format. The following table describes the significant bits:

Bit Value Description
0 1 Do not format sensitive information, for example,
passwords.
0 Format sensitive information.
1 1 Build a column title for messages in brief format. (You
must specify a fmttyp of brief and a routin argument.)
0 Do not build column titles.

DESCRIPTION

The Format Audit service converts a security auditing event message
from binary format to ASCII text and can filter information—for example,
passwords. $FORMAT_AUDIT allows the caller to format a message in a
multiple line format or a single line format and tailor the information for
a display device of a specific width.

$FORMAT_AUDIT is intended for utilities that need to format the security
auditing event messages received from the audit server listener mailbox or
the system security audit log file.

Required Privileges

None.

Required Quota

$FORMAT _AUDIT can cause a process to exceed the paging file limit
(PGFLQUOTA) if it has to format a long auditing event message. The
caller of $FORMAT_AUDIT can also receive quota violations from services
that $FORMAT _AUDIT uses, such as $IDTOASC, $FAO, and $GETMSG.

Related Services

None.

CONDITION
VALUES
RETURNED

SS$_NORMAL The service completed successfully.

SS$ MSGNOTFND The service completed successfully; however, the
message code cannot be found and a default
message has been returned.

22-23

SYSTEM SERVICE DESCRIPTIONS
$FORMAT_AUDIT

SS$_ACCVIO
SS$_BADPARAM
SS$_BUFFEROVF
SS$_INSFMEM

SS$_IVCHAN
SS$_IVIDENT
SS$_NOSUCHID

Because the rights database is an indexed file that you access with VMS L

The item list cannot be read by the caller, or the buffer
length or buffer cannot be written by the caller.

The item list contains an invalid identifier.

The service completed successfully; however, the
formatted output string overflowed the output buffer
and has been truncated.

The process dynamic memory is insufficient for
opening the rights database.

The contents of the context longword are not valid.
The specified identifier is of invalid format.

The specified identifier name does not exist in the
rights database. N

7

RMS, this service can also return RMS status codes associated with
operations on indexed files. For descriptions of these status codes, refer to
the VMS Record Management Services Manual.

22-24

e

O

SYSTEM SERVICE DESCRIPTIONS
$HASH_PASSWORD

$HASH PASSWORD Hash Password

Applies the hash algorithm you select to an ASCII password string and returns
a quadword hash value that represents the encrypted password.

FORMAT

SYS$HASH_PASSWORD
pwd ,alg ,[salt] ,usrnam ,hash

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS

pwd

VMS usage: char_string

type: character-coded text string

access: read only

mechanism: by descriptor—fixed-length string descriptor

ASCII password string to be encrypted. The pwd argument is the address
of a character string descriptor pointing to the ASCII password. The
password string can contain between 1 and 32 characters and use the
uppercase characters A through Z, the numbers 0 through 9, the dollar
sign ($), and the underscore (_).

alg

VMS usage: byte_unsigned
type: byte (unsigned)
access: read only

mechanism: by value

Algorithm used to hash the ASCII password string. The alg argument
is an unsigned byte specifying the hash algorithm. The VMS operating
system recognizes the following algorithms:

Symbolic Name Description

UAI$SC_AD_lI Uses a CRC algorithm and returns a longword hash
value. This algorithm was used in releases prior to
VMS Version 2.0.

UAI$C_PURDY Uses a Purdy algorithm over salted input. It expects
a blank-padded user name and returns a quadword
hash value. This algorithm was used during VMS
Version 2.0 field test.

22-25

SYSTEM SERVICE DESCRIPTIONS
$HASH_PASSWORD

22-26

Symbolic Name Description

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It
expects a variable length user name and returns a
quadword hash value. This algorithm was used in
releases prior to VMS Version 5.4.

UAI$C_PURDY_S Uses the Purdy algorithm over salted input. It
expects a variable length user name and returns
a quadword hash value. This algorithm is used to
hash all new passwords in VMS Version 5.4 and

later.

UAI$C_PREFERED_ Represents the latest encryption algorithm that

ALGORITHM' the VMS system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Digital N
recommends that you use this symbol in source '\

modules because it always equates with the most
recent VMS algorithm.

' The value of this symbol might be changed in future releases if an additional algorithm is
introduced.

Values ranging from 128 to 255 are reserved for customer use; the constant
UAISK_CUST_ALGORITHM defines the start of this range.

You can use the UAI$_ENCRYPT and UAI$_ENCRYPT2 item codes Q
with the SGETUALI system service to retrieve the primary and secondary -
password hash algorithms for a user.

salt

VMS usage: word_unsigned

type: word (unsigned)

access: read only

mechanism: by value

Value used to increase the effectiveness of the hash. The salt argument TN
|

is an unsigned word containing 16 bits of data that is used by the hash
algorithms when encrypting a password for the associated user name. The
$GETUALI item code UAI$_SALT is used to retrieve the SALT value for a
given user. If you do not specify a SALT value, $HASH_PASSWORD uses
the value of 0.

usrnam

VMS usage: char_string

type: character-coded text string
access: read only

mechanism: by descriptor—fixed-length string descriptor

Name of the user associated with the password. The usrnam argument is

the address of a descriptor pointing to a character text string containing

the user name. The current VMS password encryption algorithm (UAI$SK_
PURDY_S) folds the user name into the ASCII password string to ensure

that different users with the same password produce different hash values.

This argument must be supplied for all calls to $HASH_PASSWORD but N
is ignored when using the CRC algorithm (UAI$K_AD_II). @

SYSTEM SERVICE DESCRIPTIONS
$HASH_PASSWORD

hash

VMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only

mechanism: by reference

Output hash value representing the encrypted password. The hash
argument is the address of an unsigned quadword to which $HASH_
PASSWORD writes the output of the hash. If you use the UAI$C_AD_II
algorithm, the second longword of the hash is always set to zero.

DESCRIPTION Applies the hash algorithm you select to an ASCII password string and
returns a quadword hash value that represents the encrypted password.
Required Privileges
None.
Required Quota
None.
Related Services
$GETUAI and $SETUAL Use $GETUAI to get the values for the salt and
alg arguments. Use $SETUAI to store the resulting hash using the item
codes UAI$_PWD and UAI$_PWD2.
CONDITION .
SS$_NORMAL The service completed successfully.
VALUES . .
SS$_ACCVIO The input or output buffer descriptors cannot be read
RETURNED or written to by the caller.
SS$_BADPARAM The specified hash algorithm is unknown or invalid.

22-27

SYSTEM SERVICE DESCRIPTIONS
$INIT_VOL

SINIT_VOL Initialize Volume

Formats a disk or magnetic tape volume and writes a label on the volume. At
the end of initialization, the disk is empty except for the system files containing
the structure information. All former contents of the volume are lost.

FORMAT SYSSINIT VOL devnam, volnam [,itmlst]

RETURNS VMS usage: cond_value N
type: longword (unsigned) 7
access: write only NS

mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS devnam

VMS usage: char_string Q
type: character string "
access: read only

mechanism: by descriptor

Name of the device on which the volume is physically mounted. The
descriptor must point to the device name, a character string of 1 to 64
characters. The device name can be a physical device name or a logical
name; if it is a logical name, it must translate to a physical name.

The device does not have to be currently allocated; however, allocating the

device before initializing it is recommended. (\‘;
.

volnam

VMS usage: char_string

type: character string

access: read only

mechanism: by descriptor

Identification to be encoded on the volume. The descriptor must point

to the volume name, a character string of 1 to 12 characters. For a disk

volume name, you can specify a maximum of 12 alphanumeric characters;

for a magnetic tape volume name, you can specify a maximum of 6 ANSI

“a” characters. Any valid ANSI “a” characters can be used; these include

numbers, uppercase letters, and any one of the following nonalphanumeric

characters:

V"% ()% +,-. /1 <=>

Nonalphanumeric characters are not allowed in the volume name on disk. @

22-28

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL
itmlist
VMS usage: item_list_3
type: longword (unsigned)
access: read only

mechanism: by reference

Item list specifying options that can be used when initializing the volume.
The itmlst argument is the address of a list of item descriptors, each of
which describes one option. The list of item descriptors is terminated by a
longword of 0.

The following diagram depicts the format of a single item descriptor:

31 15 0
Item Code Buffer Length

Buffer Address

Return Length Address

ZK-1705-GE

$INIT_VOL ltem Descriptor Fields

buffer length

A word specifying the length, in bytes, of the buffer that supplies the
information $INIT_VOL needs to process the specified item code. The
length of the buffer needed depends upon the item code specified in the
item descriptor.

item code

A word containing an option for the initialize operation. These codes are
defined by the $INITDEF macro.

There are three types of item codes:

* Boolean item code. Boolean item codes specify a true or false
value. The form INIT$_code specifies a true value and the form
INIT$_NO_code specifies a false value. For Boolean item codes, the
buffer length and buffer address fields of the item descriptor must
be zero.

* Symbolic value item code. Symbolic value item codes specify one of
a specified range of possible choices. The buffer length and buffer
address fields of the item descriptor must be zero.

* Input value item code. Input value item codes specify a value to be
used by $INIT_VOL. The buffer length and buffer address fields of
the item descriptor must be nonzero.

Each item code is described after the argument descriptions.

buffer address

A longword containing the address of the buffer that supplies information
to $INIT_VOL.

22-29

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL

return length address
This field is not used.

item codes

22-30

INIT$_ACCESSED

An input item code that specifies the number of directories allowed in
system space on the volume.

You must specify an integer between 0 and 255 in the input buffer. The
default value is 3.

The INIT$_ACCESSED item code applies only to Files—11 Structure Level
1 disks. '

INIT$_BADBLOCKS_LBN

An input item code that enables $INIT_VOL to mark bad blocks on the
volume; no data is written to those faulty areas. INIT$_BADBLOCKS_
LBN specifies faulty areas on the volume by logical block number and
block count.

The buffer from which $INIT_VOL reads the option information contains
an array of quadwords containing information in the following format:

31 0
Logical Block Number

Count

ZK-1590A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN:

Field Symbol Name Description
Logical block INIT$L_BADBLOCKS_LBN Specifies the logical block number
number of the first block to be marked as
allocated
Count INIT$L_BADBLOCKS _ Specifies the number of blocks to
COUNT be allocated. This range begins

with the first block, as specified in
INIT$L_BADBLOCKS_LBN

For example, if the input buffer contains the values 5 and 3, INIT_VOL
starts at logical block number 5 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length
field in the item descriptor.

All media supplied by Digital and supported on the VMS operating system,
except floppy disks and TU5S8 cartridges, are factory formatted and contain
bad block data. The Bad Block Locator Utility (BAD) or the diagnostic
formatter EVRAC can be used to refresh the bad block data or to construct
it for the floppy disks and TU58 cartridges.

N

\ 4

~. .7

O

SYSTEM SERVICE DESCRIPTIONS
$INIT_VOL

The INIT$_BADBLOCKS_LBN item code is necessary only to enter bad
blocks that are not identified in the volume’s bad block data. For more
information, see the VMS Bad Block Locator Utility Manual.

The INIT$_BADBLOCKS_LBN item code applies only to disks.

INIT$_BADBLOCKS_SEC

An input item code that specifies faulty areas on the volume by sector,
track, cylinder, and block count. $INIT_VOL marks the bad blocks as
allocated; no data is written to them.

The input buffer must contain an array of octawords containing
information in the following format:

31 0
Sector
Count
Track
Cylinder
ZK-1591A-GE

The following table describes the information to be specified for INIT$_
BADBLOCKS_LBN:

Field Symbol Name Description

Sector INIT$L_BADBLOCKS _ Specifies the sector number of the
SECTOR first block to be marked as allocated

Count INIT$L_BADBLOCKS Specifies the number of blocks to
COUNT be allocated

Track INIT$L._BADBLOCKS _ Specifies the track number of the
TRACK first block to be marked as allocated

Cylinder INIT$L_BADBLOCKS_ Specifies the cylinder number of the
CYLINDER first block to be marked as allocated

For example, if the input buffer contains the values 12, 3, 1 and 2, INIT_
VOL starts at sector 12, track 1, cylinder 2 and allocates 3 blocks.

The number of entries in the buffer is determined by the buffer length
field in the item descriptor.

All media supplied by Digital and supported on the VMS operating system,
except floppy disks and TU58 cartridges, are factory formatted and contain
bad block data. The Bad Block Locator Utility (BAD) or the diagnostic
formatter EVRAC can be used to refresh the bad block data or to construct
it for the floppy disks and TU58 cartridges. The INIT$_BADBLOCKS_
SEC item code is necessary only to enter bad blocks that are not identified
in the volume’s bad block data. For more information, see the VMS Bad
Block Locator Utility Manual.

The INIT$_BADBLOCKS_SEC item code applies only to disks.

22-31

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL

22-32

INIT$_CLUSTERSIZE

An input item code that specifies the minimum allocation unit in blocks.
The input buffer must contain a longword value. The maximum size that
can be specified for a volume is one-hundredth the size of the volume; the
minimum size is calculated with the following formula:

volume stze tn blocks
255 % 4006

The INIT$_CLUSTERSIZE item code applies only to Files—11 Structure
Level 2 disks (for Files—11 Structure Level 1 disks, the cluster size is 1).
For Files—11 Structure Level 2 disks, the cluster size default depends on
the disk capacity.

¢ Disks that are 50,000 blocks or larger have a default cluster size of 3.
¢ Disks smaller than 50,000 blocks have a default value of 1.

INIT$_COMPACTION

INIT$_NO_COMPACTION—Default

A Boolean item code that specifies whether data compaction should be
performed when writing the volume.

The INIT$_COMPACTION item code applies only to TA90 drives.

INIT$_DENSITY
A symbolic item code that specifies the density value for magnetic tapes
and diskettes.

For magnetic tape volumes, the INIT$_DENSITY item code specifies the
density in bytes per inch (bpi) at which the magnetic tape is written.
Possible symbolic values for tapes are as follows:

e INIT$K_DENSITY_800_BPI
e INIT$K DENSITY_1600_BPI
e INIT$K DENSITY_6250_BPI

The specified density value must be supported by the drive. If you do not
specify a density item code for a blank magnetic tape, the system uses a
default density of the highest value allowed by the tape drive. If the drive
allows 6250, 1600, and 800 bpi operation, the default density is 6250. If
the drive allows only 1600 and 800 bpi operation, the default density is
1600. If you do not specify a density item code for a magnetic tape that
has been previously written, the system uses the previously set volume
density.

For diskettes, the INIT$_DENSITY item code specifies how the diskette is
to be formatted. Possible symbolic values for diskettes are as follows:

INIT$K_DENSITY_SINGLE_DISK
INIT$K_DENSITY_DOUBLE_DISK
INIT$K_DENSITY_DD_DISK
INIT$K_DENSITY_HD_DISK

[]

@

Note:

SYSTEM SERVICE DESCRIPTIONS
$INIT_VOL

For floppy disk volumes that are to be initialized on RX02, RX23 or RX33
diskette drives, the following values specify how the floppy disk is to be
formatted:

e INIT$K_DENSITY_SINGLE_DISK
* INIT$K_DENSITY_DOUBLE_DISK
¢ INIT$K_DENSITY_DD_DISK

e INIT$K_DENSITY_HD_DISK

Diskettes are initialized as follows:

o RX23 diskettes—DD or HD density.

¢ RX33 diskettes—double density only.

* RXO02 dual-density diskette drives—single or double density.

If you do not specify a density item code for a floppy disk, the system
leaves the volume at the density at which it was last formatted. RX02
floppy disks purchased from Digital are formatted in single density.

Floppy disks formatted in double density cannot be read or
written by the console block storage device (an RX01 drive) of

a VAX-11/780 processor until they have been reformatted in single
density.

INIT$_DIRECTORIES

An input item code that specifies the number of entries to preallocate for
user directories. The input buffer must contain a longword value in the
range of 16 to 16000. The default value is 16.

The INIT$_DIRECTORIES item code applies only to disks.

INIT$_ERASE

INIT$_NO_ERASE—Default

A Boolean item code that specifies whether deleted data should be
physically destroyed by performing the data security erase (DSE) operation
on the volume before initializing it. The INIT$_ERASE item code applies
to the following devices:

¢ ODS-2 disk volumes

¢ ANSI magnetic tape volumes on magnetic tape devices that support
the hardware erase function, for example, TU78 and MSCP magnetic
tapes.

For disk devices, this item code sets the ERASE volume attribute, causing
each file on the volume to be erased when it is deleted.

INIT$_EXTENSION

An input item code that specifies, by the number of blocks, the default
extension size for all files on the volume. The extension default is used
when a file increases to a size greater than its initial default allocation
during an update. For Files~11 Structure Level 2 disks, the buffer must
contain a longword value in the range 0 to 65535. For Files—11 Structure
Level 1 disks, the input buffer must contain a longword value in the range

22-33

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL

22-34

of 0 to 255. The default value is 5 for both Structure Level 1 and Structure
Level 2 disks.

The default extension set by this item code is used only if the following
conditions are in effect:

e No default extension for the file has been set

e No default extension for the process has been set using the SET RMS
command.

INIT$_FPROT

An input item code that specifies the default protection that is applied

to all files on the volume. The input buffer must contain a longword
protection mask that contains four 4-bit fields. Each field grants or denies
read, write, execute, and delete access to a category of users. Cleared
bits grant access; set bits deny access. The following diagram depicts the
structure of the protection mask:

World Group Owner System

D|E[{W|R|DIE|W|R|D|E|W|R|D|E[{W|R
151413121110 9 8 7 6 5 4 3 2 1 0
ZK-1592A-GE

The INIT$_FPROT item code applies only to Files—11 Structure Level 1
disks and is ignored if it is used on a VMS system. VMS systems use
the default file extension set by the DCL command SET PROTECTION
/DEFAULT.

INITS_HEADERS

An input item code that specifies the number of file headers to be allocated
for the index file. The input buffer must contain a longword value within
the range of 16 to the value set by the INIT$_MAXFILES item code. The
default value is 16.

The INIT$_HEADERS item code applies only to disks.

INIT$_HIGHWATER—Default
INITS_NO_HIGHWATER

A Boolean item code that sets the file highwater mark (FHM) volume
attribute, which guarantees that a user cannot read data that he or she
has not written.

INIT$_NO_HIGHWATER disables FHM for a volume.
The INIT$_HIGHWATER and INIT$_NO_HIGHWATER item codes apply
only to Files—11 Structure Level 2 disks.

INIT$_INDEX_BEGINNING

A symbolic item code that places the index file for the volume’s directory
structure at the beginning of the volume. By default, the index is placed
in the middle of the volume.

This item code applies only to disks.

1/\
N

SYSTEM SERVICE DESCRIPTIONS
$INIT_VOL

INIT$_INDEX_BLOCK

An input item code that specifies the location of the index file for the
volume’s directory structure by logical block number. The input buffer
must contain a longword value specifying the logical block number of the
first block of the index file. By default, the index is placed in the middle of
the volume.

The INIT$_INDEX_BLOCK item code applies only to disks.

INIT$_INDEX_END

A symbolic item code that places the index file for the volume’s directory
structure at the end of the volume. The default is to place the index in the
middle of the volume.

This item code applies only to disks.

INIT$_INDEX_MIDDLE

A symbolic item code that places the index file for the volume’s directory
structure in the middle of the volume. This is the default location for the
index.

This item code applies only to disks.

INIT$ LABEL_ACCESS

An input item code that specifies the character to be written in the volume
accessibility field of the VMS ANSI volume label VOL1 on an ANSI
magnetic tape. Any valid ANSI “a” characters can be used; these include
numbers, uppercase letters, and any one of the following nonalphanumeric
characters:

V"% ()*¥+,-./:;<=>

By default, the VMS operating system provides a routine SYSSMTACCESS
that checks this field in the following manner:

¢ If the magnetic tape was created on a version of the VMS operating
system that conforms to Version 3 of ANSI, this item code is used to
override any character except an ASCII space.

¢ If the magnetic tape conforms to an ANSI standard that is later than
Version 3, this item code is used to override any character except an
ASCII 1 character.

INIT$_LABEL_VOLO

An input item code that specifies the text that is written in the owner
identifier field of the VMS ANSI volume label VOL1 on an ANSI magnetic
tape. The owner identifier field can contain up to 14 valid ANSI “a”
characters.

INIT$_MAXFILES

An input item code that restricts the maximum number of files that the
volume can contain. The input buffer must contain a longword value
between 0 and a value determined by the following calculation:

volume size tn blocks
cluster factor +1

22-35

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL

22-36

Once initialized, the maximum number of files can be increased only by
reinitializing the volume.

The default maximum number of files is calculated as follows:

volume size in blocks
(cluster factor + 1) %2

The INIT$_MAXFILES item code applies only to disks.

INIT$_OVR_ACCESS

INIT$_NO_OVR_ACCESS—Default

A Boolean item code that specifies whether to override any character in
the accessibility field of the VMS ANSI volume label VOL1 on an ANSI
magnetic tape. For more information, see the Guide to VMS Files and
Devices.

To specify INIT$_OVR_ACCESS, the caller must either own the volume or
have VOLPRO privilege.

INIT$_OVR_EXP

INIT$_NO_OVR_EXP—Default

A Boolean item code that specifies whether the caller writes to a magnetic
tape that has not yet reached its expiration date. This item code only
applies to the magnetic tapes that were created before VMS Version 4.0
and that use the D% format in the volume owner identifier field.

To specify INIT$_OVR_EXP, the caller must either own the volume or have
VOLPRO privilege.

INIT$_OVR_VOLO

INIT$_NO_OVR_VOLO—Default

A Boolean item code that allows the caller to override processing of the
owner identifier field of the VMS ANSI volume label VOL1 on an ANSI
magnetic tape.

To specify INIT$_OVR_VOLO, the caller must either own the volume or
have VOLPRO privilege.

INITS_OWNER

An input item code that specifies the UIC that will own the volume. The
input buffer must contain a longword value, which is the UIC. The default
is the UIC of the caller.

For magnetic tapes, no UIC is written unless protection on the magnetic
tape is specified. If the INIT$_VPROT item code is specified but the
INIT$_OWNER item code is not specified, the UIC of the caller is assigned

ownership of the volume.

INIT$_READCHECK
INIT$_NO_READCHECK—Default
A Boolean item code that specifies whether data checking should be

performed for all read operations on the volume. For more information
about data checking, see the VMS I/O User’s Reference Manual: Part 1.

The INIT$_READCHECK item code applies only to disks.

4
N

@

C

O

SYSTEM SERVICE DESCRIPTIONS
$SINIT_VOL

INIT$S_SIZE

An input item code that specifies the number of blocks allocated for a RAM
disk with a device type of DT$_RAM_DISK. The input buffer must contain
a longword value.

INIT$_STRUCTURE_LEVEL_1
INIT$_STRUCTURE_LEVEL_2—Default

Symbolic item codes that specify whether the volume should be formatted
in Files—11 Structure Level 1 or Structure Level 2. Structure Level 1 is
incompatible with the following item codes:

¢ INIT$_READCHECK
e INIT$ WRITECHECK
¢ INIT$_CLUSTERSIZE

The default protection for a Structure Level 1 disk is full access to system,
owner, and group users, and read access to all other users.

The INIT$_STRUCTURE_LEVEL_1 item code applies only to disks.

INITS_USER_NAME

An input item code that specifies the user name that is associated with
the volume. The input buffer must contain a character string from 1 to 12
alphanumeric characters, which is the user name. The default is the user
name of the caller.

INIT$_VERIFIED
INITS_NO_VERIFIED

A Boolean item code that indicates whether the disk contains bad block
data. INIT$_NO_VERIFIED indicates that any bad block data on the
disk should be ignored. For disks with 4096 blocks or more, the default is
INIT$_VERIFIED.

INIT$_NO_VERIFIED is the default for the following:
¢ Disks with less than 4096 blocks
* Digital Storage Architecture (DSA) devices

¢ Disks which are not last-track devices
The INIT$_VERIFIED item codes apply only to disks.

INIT$_VPROT

An input item code that specifies the protection that is assigned to the
volume. The input buffer must contain a longword protection mask that
contains four 4-bit fields. Each field grants or denies read, write, execute,
and delete access to a category of users. Cleared bits grant access; set bits
deny access.

22-37

SYSTEM SERVICE DESCRIPTIONS

$INIT_VOL

The following diagram depicts the stiructure of the protection mask:

World Group Owner System

DIE(W|R[D|E(W|R|D|E|W|[R|D|E|W|R
1514131211109 8 76 56 4 3 2 1 0
ZK-1592A-GE

The default is the default protection of the caller.

For magnetic tape, the protection code is written to a VMS-specific volume
label. The system only applies read and write access restrictions; execute
and delete access are ignored. Moreover, the system and the owner are
always given read and write access to magnetic tapes, regardless of the
protection mask specified.

When you specify a protection mask for a disk volume, access type E
(execute) indicates Create Access.

INIT$_WINDOW

The INIT$_WINDOW item code specifies the number of mapping pointers
to be allocated for file windows. The input buffer must contain a longword
value in the range 7 to 80. The default is 7.

When a file is opened, the file system uses the mapping pointers to access
the data in the file.

The INIT$_WINDOW item code applies only to disks.

INIT$_WRITECHECK
INIT$_NO_WRITECHECK—Default

A Boolean item code that specifies whether data checking should be
performed for all read operations on the volume. For more information
about data checking, see the VMS I/O User’s Reference Manual: Part I.

INIT$_WRITECHECK item code applies only to disks.

DESCRIPTION

22-38

The Initialize Volume system service formats a disk or magnetic tape
volume and writes a label on the volume. At the end of initialization,
the disk is empty except for the system files containing the structure
information. All former contents of the volume are lost.

A blank magnetic tape can sometimes cause unrecoverable errors when
it is read. $INIT_VOL attempts to read the volume unless the following
three conditions are in effect:

e INIT$_OVR_ACCESS Boolean item code is specified.
e INIT$_OVR_EXP Boolean item code is specified.
* Caller has VOLPRO privilege.

If the caller has VOLPRO privilege, $INIT_VOL initializes a disk
without reading the ownership information. Otherwise, the ownership
of the volume is checked.

O

o

SYSTEM SERVICE DESCRIPTIONS
$INIT_VOL

A blank floppy disk or a diskette with an incorrect format can sometimes
cause a fatal drive error. Such a diskette can be initialized successfully by
specifying the INIT$_DENSITY item code to format the diskette.

Required Privileges

To initialize a particular volume, the caller must either have volume
protection (VOLPRO) privilege or the volume must be one of the following:

¢ Blank disk or magnetic tape; that is, a volume that has never been
written

¢ Disk that is owned by the caller’s UIC or by the UIC [0,0]

e Magnetic tape that allows write access to the caller’s UIC or that was
not protected when it was initialized

Required Quota

None.
CONDITION SS$_NORMAL Th i leted full
e service completed successfully.
VALUES - servis come SO
SS$_ACCVIO The item list or an address specified in the item list
RETURNED cannot be accessed.
SS$_BADPARAM A buffer length of zero was specified with a nonzero
item code or an illegal item code was specified.
SS$_IVSSRQ A concurrent call to SYS$INIT_VOL is already active
for the process.
SS$_NOPRIV The caller does not have sufficient privilege to initialize
the volume.
SS$_NOSUCHDEV The specified device does not exist on the host
system.

The $INIT_VOL service can also return the following condition values, which are
specific to the Initialize Volume Utility. The symbolic definition macro $INITDEF defines
these condition values.

INIT$_ALLOCFAIL Index file allocation failure.

INIT$_BADACCESSED Value for INIT$_ACCESSED item code out of range.

INIT$_BADBLOCKS Invalid syntax in bad block list.

INIT$_BADCLUSTER Value for INIT$_CLUSTER_SIZE item code out of
range.

INIT$_BADDENS Invalid value for INIT$_DENSITY item code.

INIT$_BADDIRECTORIES Value for INIT$_DIRECTORIES item code out of
range.

INIT$_BADEXTENSION Value for INIT$_EXTENSION item code out of range.

INIT$_BADHEADERS Value for INIT$_HEADERS item code out of range.

INIT$_BADMAXFILES Value for INIT$_MAXFILES item code out of range.

22-39

SYSTEM SERVICE DESCRIPTIONS

$SINIT_VOL

22-40

INIT$_BADOWNID
INIT$_BADRANGE
INIT$_BADVOLT
INIT$_BADVOLACC
INIT$_BADVOLLBL
INIT$_BADWINDOWS
INIT$_BLKZERO
INIT$_CLUSTER
INIT$._ CONFQUAL
INIT$_DIAGPACK
INIT$_ERASEFAIL
INIT$_FACTBAD
INIT$_ILLOPT

INIT$_INDEX
INIT$_LARGECNT
INIT$_MAXBAD
INIT$_MTLBLLONG

INIT$_MTLBLNONA

INIT$_NOBADDATA
INIT$_NONLOCAL
INIT$_NOTRAN
INIT$_NOTSTRUCH1

INIT$_UNKDEV

Invalid value for owner ID.

Bad block address not on volume.

Bad VOL1 ANSI label.

Invalid value for INIT$_LABEL_ACCESS item code.
Invalid value for ANSI tape volume label.

Value for INIT$_WINDOWS item code out of range.
Block zero is bad—volume not bootable.
Unsuitable cluster factor.

Conflicting options were specified.

Disk is a diagnostic pack.

Volume not completely erased.

Cannot read factory bad block data.

Item codes not appropriate for the device were
specified.

Invalid index file position.
Disk too large to be supported.
Bad block table overflow.

Magnetic tape label specified is longer than
6 characters.

Magnetic tape label specified contains non-ANSI "a"
characters.

Bad block data not found on volume.

Device is not a local device.

Logical name cannot be translated.

Option(s) not available with Files—11
Structure Level 1.

Unknown device type.

o

SYSTEM SERVICE DESCRIPTIONS
$RELEASE_VP

$RELEASE VP Release Vector Processor

Terminates the current process’s status as a vector consumer.

I

FORMAT SYS$RELEASE_VP

RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS Nore.

DESCRIPTION The Release Vector Processor service terminates the current process’s
status as a vector consumer. $RELEASE_VP waits for all pending vector
instructions and vector memory operations to complete. It then declares
that the process no longer needs a vector-present processor. As a result,
the process relinquishes its use of the processor’s vector registers and can
be scheduled on another processor in the system.

In systems that do not have vector-present processors but do have the

VAX vector instruction emulation facility (VVIEF) in use, this service

relinquishes the process’s use of VVIEF. The VVIEF remains mapped in

the process’s address space.

Required Privileges

None.

Required Quota

None.

Related Services

$RESTORE_VP_EXCEPTION, $RESTORE_VP_STATE, $SAVE_VP_

EXCEPTION
CONDITION SS$_NORMAL The service completed successfull

i su ully.

VALUES - P ’
RETURNED

22-41

SYSTEM SERVICE DESCRIPTIONS
$RESTORE_VP_EXCEPTION

$RESTORE_VP_EXCEPTION Restore Vector

Processor Exception State

Restores the saved exception state of the vector processor.

FORMAT

SYS$RESTORE_VP_EXCEPTION excid

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values returned by
this service returns are listed in the Condition Values Returned section.

ARGUMENTS

excid

VMS usage: context

type: longword (unsignhed)

access: read only

mechanism: by reference

Internal ID of the exception state saved by $SAVE_VP_EXCEPTION. The
excid argument is the address of a longword containing this ID.

DESCRIPTION

22-42

The Restore Vector Exception State service restores from memory the
vector exception state saved by a prior call to $SAVE_VP_EXCEPTION.
After a routine invokes this service, the next vector instruction issued
within the process causes the restored vector exception to be reported.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, VMS saves the mainline routine’s vector state, including
its vector exception state. Any other routine that executes synchronously
with, or asynchronously to, currently executing vectorized code and that
performs vector operations itself must preserve the preempted routine’s
vector exception state across its own execution. It does so by using the
$SAVE_VP_EXCEPTION and $RESTORE_VP_EXCEPTION services.

Used together, these services ensure that vector exceptions occurring as a
result of activity in the original routine are serviced by existing condition
handlers within that routine.

In systems that do not have vector-present processors but do have the VAX
vector instruction emulation facility (VVIEF) in use, VVIEF emulates the
function of this service.

Required Privileges

None.

C

SYSTEM SERVICE DESCRIPTIONS
$RESTORE_VP_EXCEPTION

Required Quota
BYTLM

Related Services
$RELEASE_VP, $RESTORE_VP_STATE, $SAVE_VP_EXCEPTION

CONDITION
VALUES
RETURNED

SS$_NORMAL The service completed successfully. The service also
returns this status when executed in a system that
does not have vector-present processors and that
does not have the VAX vector instruction emulation
facility (VVIEF) loaded.

SS$_ACCVIO The caller cannot read the exception 1D longword.
SS$_NOSAVPEXC No saved vector exception state exists for this
exception ID.

22-43

SYSTEM SERVICE DESCRIPTIONS
$RESTORE_VP_STATE

$RESTORE_VP STATE Restore Vector State

Allows an AST routine or condition handler to restore the vector state of the
mainline routine.

FORMAT

SYSSRESTORE_VP_STATE

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS

None.

DESCRIPTION

22-44

The Restore Vector State service allows an AST routine or a condition
handler to restore the vector state of the process’s mainline routine.

By default, when an asynchronous routine (AST routine or condition
handler) interrupts the execution of a mainline routine, VMS creates a
new vector state when the routine issues its first vector instruction. At
this point, the vector state of the mainline routine is inaccessible to the
asynchronous routine. If the asynchronous routine must manipulate the
vector state of the mainline routine, it first calls $RESTORE_VP_STATE
to restore the mainline’s vector state.

In systems that do not have vector-present processors but do have the VAX
vector instruction emulation facility (VVIEF) in use, VVIEF emulates the
functions of this service.

This service can be called only from a routine running in user mode.
Required Privileges
None.

Required Quota

None.

Related Services
$RELEASE_VP, $RESTORE_VP_EXCEPTION, $SAVE_VP_EXCEPTION

e

N
N

)

SYSTEM SERVICE DESCRIPTIONS
$RESTORE_VP_STATE

CONDITION
VALUES
RETURNED

SS$_NORMAL

SS$_BADSTACK
SS$_BADCONTEXT
SS$_WRONGACMODE

The service completed successfully. Vector state of
the mainline has been restored. The service also
returns this status when executed in a system that
does not have vector-present processors and that
does not have the VAX vector instruction emulation
facility (VVIEF) loaded.

Bad user stack encountered.
The mainline vector state is corrupt.

The system service was called from an access mode
other than user mode.

22-45

SYSTEM SERVICE DESCRIPTIONS
$SAVE_VP_EXCEPTION

$SAVE_VP_EXCEPTION Save Vector Processor

Exception State

Saves the pending exception state of the vector processor.

FORMAT

SYS$SAVE_VP_EXCEPTION excid

RETURNS

VMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in RO. Condition values returned by
this service are listed in the Condition Values Returned section.

ARGUMENTS

excid

VMS usage: context

type: longword (unsigned)

access: read only

mechanism: by reference

Internal ID of the exception state saved by $SAVE_VP_EXCEPTION. The
excid argument is the address of a longword containing this ID.

DESCRIPTION

22-46

The Save Vector Exception State service saves in memory any pending
vector exception state and clears the vector processor’s current exception
state.

By default, when an AST or condition handler interrupts the execution of a
mainline routine, VMS saves the mainline routine’s vector state, including
its vector exception state. Any other routine that executes synchronously
with, or asynchronously to, currently executing vectorized code and that
performs vector operations itself must preserve the preempted routine’s
vector exception state across its own execution. It does so by using the
$SAVE_VP_EXCEPTION and $RESTORE_VP_EXCEPTION services.
Used together, these services ensure that vector exceptions occurring as a
result of activity in the original routine are serviced by existing condition
handlers within that routine.

In systems that do not have vector-present processors but do have the VAX
vector instruction emulation facility (VVIEF) in use, VVIEF emulates the
functions of this service.

Required Privileges

None.

O

Required Quota

None.

Related Services

SYSTEM SERVICE DESCRIPTIONS

$SAVE_VP_EXCEPTION

$RELEASE_VP, $RESTORE_VP_EXCEPTION, $RESTORE_VP_STATE

CONDITION
VALUES
RETURNED

SS$_NORMAL

S8$_ACCVIO
SS$_INSFMEM

SS$_WASSET

The service completed successfully. There were no
pending vector exceptions. The service also returns
this status when executed in a system that does not
have vector-present processors and that does not
have the VAX vector instruction emulation facility
(VVIEF) loaded.

The caller cannot write the exception ID longword.

Insufficient system dynamic memory exists for
completing the service.

The service completed successfully. Pending vector
exception state has been saved.

22-47

SYSTEM SERVICE DESCRIPTIONS

$START_TRANS

$START TRANS Start Transaction

Starts a transaction by allocating a transaction identifier (TID) and establishing
the internal structures that define a transaction.

FORMAT SYS$START _TRANS [efn] [flags] iosb ,[astadr]
,[astporm] ,tid
RETURNS VMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value
Longword condition value. All system services (except $EXIT) return by
immediate value a condition value in R0O. Condition values returned by
this service are listed in the Condition Values Returned section.
ARGUMENTS efn
VMS usage: ef_number
type: longword (unsigned)
access: read only

22-48

mechanism: by value

Number of the event flag to be set. The efn argument is a longword
containing this number; however, $START_TRANS uses only the low-order
byte. If you do not specify efn, $START_TRANS uses the default value 0.

flags

VMS usage: mask_longword
type: longword (unsigned)
access: read only

mechanism: by value

Flags specifying options for $START_TRANS. The flags argument is a
longword bit mask that is the logical OR of each bit set, in which each bit
corresponds to an option.

The $DDTMDEF macro defines a symbolic name for each flag bit.
Table 22-4 describes each flag.

O

SYSTEM SERVICE DESCRIPTIONS
$START_TRANS

Table 22-4 $START_TRANS Operation Flags

Flag Description

DDTM$M_NONDEFAULT Indicates that this transaction is not the process default
(current) transaction.

DDTM$M_SYNC Indicates successful synchronous completions by
returning SS$_SYNCH. When synchronous completion
is successful, the completion AST address is not called,
the 10SB is not written, and the event flag is not set.

DDTM$M_PROCESS Indicates that the transaction might survive image
rundown. Caller must be in supervisor, executive, or
kernel mode.

iosb

VMS usage: io_status_block

type: quadword (unsigned)

access: write only

mechanism: by reference

I/0 status block (IOSB) to receive the final completion status of the

request. The iosb argument is the address of the quadword I/O status
block.

The following diagram shows the structure of the I/O status block:

31 15 0
Reserved by Digital Condition Value
Reserved by Digital
ZK-1224A-GE

astadr
VMS usage: ast_procedure
type: procedure entry mask
access: call without stack unwinding

mechanism: by reference
AST service routine to be executed. The astadr argument is the address
of the entry mask of this routine.

If you specify astadr, the AST routine executes at the same access mode
as the caller of the $START_TRANS service,

Note that the completion AST is not called if SS$_SYNCH is returned in
RO.

astprm

VMS usage: user_arg

type: longword (unsigned)
access: read only

mechanism: by value

22-49

SYSTEM SERVICE DESCRIPTIONS

$START TRANS

AST parameter passed to the AST service routine specified by the astadr
argument. The astprm argument is a longword.

tid

VMS usage: transaction_id

type: octaword (unsigned)
access: write only

mechanism: by reference
Pointer to the transaction identifier (TID).

DESCRIPTION

The Start Transaction service starts a transaction and allocates a unique
TID for it.

The DECdtm services maintain the concept of a current transaction for
each process. When a transaction is started using $START_TRANS, that
transaction is considered the process default or current transaction. The
TID assigned by $START _TRANS identifies the current transaction.
There cannot be a current transaction already active for a process
when you start a new transaction, or an error is returned. The current
transaction becomes undefined when the current transaction is ended
by $END_TRANS or $ABORT_TRANS. However, it is possible to start
a nondefault transaction while the current transaction is in progress

by specifying the NONDEFAULT flag. A nondefault transaction is not
considered a current transaction.

Required Privileges

None.

Required Quota

$START_TRANS uses the job’s buffered byte count quota limit (BYTLM)
and AST quota limit (ASTLM).

Related Services
$ABORT_TRANS, $END_TRANS

CONDITION
VALUES
RETURNED

22-50

SS$_NORMAL The operation was successfully queued.

SS$_SYNCH The synchronous operation completed successfully.

SS$_ABORT The transaction aborted during processing.

SS$_ACCVIO The 10SB or TID cannot be read by the caller, or the
TID or IOSB cannot be written by the caller.

SS$_ALRCURTID An attempt was made to start a default (current)
transaction when there was already one started.

SS$_BADPARAM The operations flags are invalid.

SS$_EXASTLM The process has exceeded its AST limit quota.

SS$ _EXQUOTA The process quota was exceeded.

O

SYSTEM SERVICE DESCRIPTIONS
$START_TRANS

SS$_ILLEFC The efn argument specifies an illegal flag number.

SS$_INSFMEM There is insufficient system dynamic memory for the
operation.

SS$_WRONGACMODE The wrong access mode was specified; a process flag

was specified from user mode.

CONDITION
VALUES
RETURNED IN
THE I/O STATUS
BLOCK

Same as those returned in R0O. A value of SS$_NORMAL returned in the
I/O status block indicates that the service completed successfully.

22-51

SYSTEM SERVICE DESCRIPTIONS

$START_TRANSW

$START TRANSW Start Transaction and Wait

Starts a transaction. It allocates a transaction identifier and establishes the
internal structures that define a transaction.

$START_TRANSW completes synchronously; that is, it returns to the caller
after the request has actually completed. For asynchronous completion, you
use the Start Transaction ($START_TRANS) service; $START_TRANS starts
a transaction and allocates a transaction identifier without waiting for the
operation to complete.

In all other respects, $SSTART_TRANSW is identical to $START_TRANS. For
all other information about the $START_TRANSW service, refer to the section
on $START_TRANS.

For additional information about system service completion, refer to the
Synchronize ($SYNCH) service and to the Introduction to VMS System
Services.

FORMAT

22-52

SYS$START_TRANSW [efn] [flags] ,iosb ,[astadr]
,[astorm] ,tid

C

System Services
22.5 Modified System Services

22,5 Modified System Services

This section describes system services that have been modified in the VMS
Version 5.4 operating system.

22.5.1 $CHANGE_ACL

Modifications to $CHANGE_ACL include a new object type to support
vector processing and new item codes to support enhancements to system
security, described in the following sections.

22.5.1.1 Vector Processing: New Object Type

To control use of a system’s vector processors, SCHANGE_ACL supports a
new CAPABILITY object type, which describes a restricted resource. With
the VMS Version 5.4 operating system, if the object type is CAPABILITY,
use the reserved name VECTOR. The only capability currently defined by
the VMS operating system is the VECTOR capability, governing the ability
of a subject to access a vector processor in the system. The symbolic name
is ACL$C_CAPABILITY.

22.5.1.2 System Security: New Item Codes

In Version 5.4 of the VMS operating system, SCHANGE_ACL accepts the
following item codes:

ACL$C_DELETE_ALL

When you specify ACL$C_DELETE_ALL, $CHANGE_ACL deletes the
entire Access Control List (ACL), including protected entries.

ACL$C_GRANT _ACE

When you specify ACL$C_GRANT_ACE, $CHANGE_ACL reads the next
ACE that matches the process’s identifiers into the buffer pointed to by
bufadyr. The returned ACE might grant or deny access to the object.
Since an ACL can have more than one matching ACE, you should proceed
as follows:

1 Specify an initial value of zero (0) for contxt.

2 Call $CHANGE_ACL repeatedly, without changing the value of
contxt, and test for the return status SS$_NOMOREACE, which
means that the ACL has no more matching entries.

ACL$C_NEXT_ACE

When you specify ACL$C_NEXT_ACE, $CHANGE_ACL advances through
an ACL, one ACE at a time. The contxt argument defines the initial and
final positions. The value of contxt itself is derived from the previous
ACL$C_FNDACETYP, ACL$C_FNDACLENT, or ACL$C_GRANT ACE
operation.

The $CHANGE_ACL service returns the following new status codes:
SS$_NOPRIV You do not have privileges for the requested action.

22-53

System Services

22.5 Modified System Services

SS$_INCONOLCK VMS encountered an irrecoverable error. Please submit
a Software Performance Report (SPR) that describes
conditions leading to the error.

22.5.2 $CHECK_ACCESS: Vector Processing and System Security Support

Like $CHANGE_ACL, $SCHECK_ACCESS supports the new CAPABILITY
object type. Also note that SCHECK_ACCESS requires privilege to access
the UAF, for example, SYSPRV.

The $CHECK_ACCESS service returns the following new status codes:

SS$_INSFMEN Identifiers granted to the user exceed the number
allowed.

SS$_NOCALLPRIV Caller lacks privilege for attempted operation.

SS$ _NOSUCHSEC The specified global section does not exist.

SS$_UNSUPPORTED Operations on remote object are not supported.

22.5.3 $ENQ: Enhanced Lock Manager Support

22-54

The addition of the following new flags to $ENQ enables you to expedite
lock requests and force queueing of conversions.

LCK$M_EXPEDITE

This flag is valid only for new lock requests. Specifying this flag allows

a request to be granted immediately, provided the requested mode, when
granted, would not block any currently queued requests in the resource
conversion and wait queues. Currently, this flag is valid only for NLMODE
requests. If this flag is specified for any other lock mode, the request fails
and an error of SS$_UNSUPPORTED returned.

LCK$M_QUECVT

This flag is valid only for conversion operations. A conversion request with
the LCK$M_QUECVT flag set will be forced to wait behind any already
queued conversions.

The conversion request is granted immediately, if there are no already
queued conversions.

The QUECVT behavior is valid only for a subset of all possible conversions.
Table 22—5 defines the legal set of conversion requests for LCK$M_
QUECVT. Illegal conversion requests fail, with SS$_BADPARAM
returned.

®

J

C

System Services
22.5 Modified System Services

Table 22-5 Legal QUECVT Conversions

Lock Mode Lock Mode to Which Lock Is Converted
at Which

Lock Is Held NL CR cw PR PW EX

NL No Yes Yes Yes Yes Yes
CR No No Yes Yes Yes Yes
cw No No No Yes Yes Yes
PR No No Yes No Yes Yes
PW No No No No No Yes
EX No No No No No No

Key to Lock Modes

NL—Null fock
CR—Concurrent read
CW—Concurrent write
PR—Protected read
PW—Protected write
EX—Exclusive lock

O 22.5.4 S$GETDVI: New Device Classes

C

In Version 5.4 of the VMS operating system, $GETDVI accepts the three
new device classes listed in Table 22-6.

Table 22-6 Values Returned by the DEVCLASS ltem

Device Class Value Symbolic Name
Workstation 70 DC$_WORKSTATION
DECvoice 97 DC$ _DECVOICE

Remote console storage 170 DC$_REMCSL_STORAGE

22.5.5 $GETJPI

The following sections describe new items codes that support vector
processing and enhancements to system security.

22.5.5.1

Vector Processing: New ltem Codes

In Version 5.4 of the VMS operating system, $GETJPI accepts the
following item codes and returns information regarding a process’s use
of system vector processing resources.

JPI$_FAST_VP_SWITCH

When you specify JPI$_FAST _VP_SWITCH, $GETJPI returns an unsigned
longword containing the number of times this process has issued a vector
instruction that resulted in an inactive vector processor being enabled
without the expense of a vector context switch. In other words, this count
reflects those instances where the process has reenabled a vector processor
on which the process’s vector context has remained intact.

22-55

System Services

22.5 Modified System Services

JPI$_SLOW_VP_SWITCH

When you specify JPI$_SLOW_VP_SWITCH, $GETJPI returns an
unsigned longword containing the number of times this process has
issued a vector instruction that resulted in an inactive vector processor
being enabled with a full vector context switch. This vector context switch
involves the saving of the vector context of the process that last used the
vector processor and the restoration of the vector context of the current
process.

JPI$_VP_CONSUMER

When you specify JPI$_VP_CONSUMER, $GETJPI returns a byte, the
low-order bit of which, when set, indicates that the process is a vector
consumer.

JPI$_VP_CPUTIM N
When you specify JPI$_VP_CPUTIM, $GETJPI returns an unsigned o S
longword that contains the total amount of time the process has

accumulated as a vector consumer.

22.5.5.2 System Security: New Item Codes

22-56

In Version 5.4 of the VMS operating system, $GETJPI accepts the
following new item codes and returns information about process security
characteristics.

JPI$_RIGHTS_SIZE

When you specify JPI$_RIGHTS_SIZE, $GETJPI returns the number Q)
of bytes required to buffer the rights list. The rights list includes both

the system rights list and the process rights list. Because the space

requirements for the rights list can change between the time you request

the size of the rights list and the time you fetch the rights list with JPI$_
RIGHTSLIST, you might want to allocate a buffer that is 10% larger.

JPI$_PROCESS_RIGHTS

When you specify JPI$_PROCESS_RIGHTS, $GETJPI returns the binary

content of the process rights list as an array of quadword identifiers. ™
Each entry consists of a longword identifier value and longword identifier Q
attributes, shown in Table 22-7. Allocate a buffer that is sufficient to hold

the process rights list because $GETJPI only returns as much of the list

as will fit in the buffer.

Table 227 Attributes of an Identifier

Symbolic Name Description
KGB$M_RESOURCE Resources can be charged to the identifier.
KGB$M_DYNAMIC Identifier can be enabled or disabled.

JPI$_SYSTEM_RIGHTS

When you specify JPI$_SYSTEM_RIGHTS, $GETJPI returns the system

rights list as an array of quadword identifiers. Each entry consists of a

longword identifier value and longword identifier attributes, shown in

Table 22-7. Allocate a buffer that is sufficient to hold the system rights @
list because $GETJPI only returns as much of the list as will fit in the

buffer.

System Services
22.5 Modified System Services

JPI$_RIGHTSLIST

When you specify JPI$_RIGHTSLIST, $GETJPI returns, as an array

of quadword identifiers, all identifiers applicable to the process. This
includes the process rights list (JPI$_PROCESS_RIGHTS) and the system
rights list (JPI$_SYSTEM_RIGHTS). Each entry consists of a longword
identifier value and longword identifier attributes, shown in Table 22-7.
Allocate a buffer that is sufficient to hold the rights list because $GETJPI
only returns as much of the list as will fit in the buffer.

JPI$_LAST_LOGIN_I

When you specify JPI$_LAST_LOGIN_I, $GETJPI returns, as a quadword
absolute time value, the date of the last successful interactive login prior
to the current session. It returns a quadword of 0 when processes have
not executed the LOGINOUT image.

JPI$_LAST_LOGIN_N

When you specify JPI$_LAST LOGIN_N, $GETJPI returns, as

a quadword absolute time value, the date of the last successful
noninteractive login prior to the current session. It returns a quadword of
0 when processes have not executed the LOGINOUT image.

JPI$_LOGIN_FAILURES

When you specify JPI$_LOGIN_FAILURES, $GETJPI returns the number
of login failures that occurred prior to the current session. It returns a
longword of 0 when processes have not executed the LOGINOUT image.

JPI$_LOGIN_FLAGS

When you specify JPI$_LOGIN_FLAGS, $GETJPI returns a longword
bitmask containing information related to the login sequence. It returns
a longword of 0 when processes have not executed the LOGINOUT image.
The following bits are defined:

Symbolic Name Description

JPISM_NEW_MAIL_AT_LOGIN User had new mail messages waiting at
login.

JPI$M_PASSWORD_CHANGED User changed the primary password during
login.

JPI$M_PASSWORD_EXPIRED User’s primary password expired during
login.

JPI$M_PASSWORD_WARNING System gave the user a warning at login

that the account’s primary password would
expire within 5 days.

JPI$M_PASSWORD2_CHANGED Account’'s secondary password was
changed during login.

JPISM_PASSWORD2_EXPIRED Account’s secondary password expired
during login.

JPISM_PASSWORD2_WARNING System gave the user a warning at login

that the account’s secondary password
would expire within 5 days.

22-57

System Services
22.5 Modified System Services

2256 $GETSYI

The following sections describe new items codes that support vector
processing and enhancements to system security.

Vector Processing: New ltem Codes

In Version 5.4 of the VMS operating system, $GETSYI accepts the
following item codes and returns information regarding the system’s
vector processing configuration.

SYI$_VP_MASK

When you specify SYI$_VP_MASK, $GETSYI returns a longword mask,
the bits of which, when set, indicate which processors in the system have
vector coprocessors.

SYI$_VP_NUMBER

When you specify SYI$_VP_NUMBER, $GETSYI returns an unsigned
longword containing the number of vector processors in the system.

SYI$_VECTOR_EMULATOR

When you specify SYI$_VECTOR_EMULATOR, $GETSYI returns a byte,
the low-order bit of which, when set, indicates the presence of the VAX
vector instruction emulator facility (VVIEF) in the system.

22.5.6.2 System Security: New ltem Code

In Version 5.4 of the VMS operating system, $GETSYI accepts the
following item code and returns information about system security.

SYI$_SYSTEM_RIGHTS

When you specify SYI$_SYSTEM_RIGHTS, $GETSYI returns the system
rights list as an array of quadword identifiers. Each entry consists of a
longword identifier value and the following longword identifier attributes:

Symbolic Name Description
KGB$M_RESOURCE Resources can be charged to the identifier.
KGB$M_DYNAMIC Identifier can be enabled or disabled.

Allocate a buffer that is sufficient to hold the system rights list because
$GETSYI only returns as much of the list as will fit in the buffer.

22.5.7 $GETUAI: New Item Codes for Enhanced Password Screening

22-58

With Version 5.4 of the VMS operating system, passwords selected by
users can be screened for acceptability. The VMS system automatically
compares new passwords against a system dictionary to ensure that a
password is not a native language word. It also maintains a history list of
a user’s passwords and compares each new password against this list to
guarantee that an old password is not reused.

In addition, a site with contractual obligations to use special algorithms
for encrypting passwords will be able to use them.

N

N

System Services
22.5 Modified System Services

To support these enhancements, $GETUAI accepts the following item
codes and returns information about passwords and logins:

UAI$_ENCRYPT

When you specify UAI$_ENCRYPT, $GETUALI returns one of the values
shown in the following table, identifying the encryption algorithm for the
primary password.

Because the encryption algorithm is a byte in length, the buffer length
field in the item descriptor should specify 1 byte.

Symbolic Name Description

UAI$C_AD_lI Uses a CRC algorithm and returns a longword hash
value. It was used in VMS releases prior to
Version 2.0.

UAI$C_PURDY Uses a Purdy algorithm over salted input. |t expects

a blank-padded user name and returns a quadword
hash value. This algorithm was used during VMS
Version 2.0 field test.

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This algorithm was used in VMS releases
prior to Version 5.4.

UAI$C_PURDY_S Uses the Purdy algorithm over salted input. It expects
a variable length user name and returns a quadword
hash value. This is the current algorithm that VMS
uses for all new password changes.

UAI$_ENCRYPT2

When you specify UAI$_ENCRYPT2, $GETUAI returns one of the
following values identifying the encryption algorithm for the secondary
password. Refer to the UAI$_ENCRYPT item code for a description of the
algorithms.

— UAI$C_AD_II

— UAI$C_PURDY
— UAI$C_PURDY_V
— UAI$C_PURDY_S

Because the encryption algorithm is a byte in length, the buffer length
field in the item descriptor should specify 1 byte.

UAI$_FLAGS
This item code has the following new symbolic names:

Symbolic Name Description

UAI$V_DISPWDDIC Automatic checking of user-selected passwords against
the system dictionary is disabled.

UAI$V_DISPWDHIS Automatic checking of user-selected passwords against

previously used passwords is disabled.

22-59

System Services
22.5 Modified System Services

O

22.5.8 $MOD_IDENT: New Status Code

In Version 5.4 of the VMS operating system, $MOD_IDENT may return
the following status code:

SS$_DUPIDENT The specified identifier value already exists.

22.5.9 $MOUNT: Volume Shadowing Flags

In Version 5.4 of the VMS operating system, SMOUNT accepts the
following new flags:

MNT$V_INCLUDE Applicable only if you have the VMS Volume
Shadowing option.
MNT$V_NOCOPY Applicable only if you have the VMS Volume (\‘
Shadowing option. e
MNT$V_OVR_SHAMEM Applicable only if you have the VMS Volume
Shadowing option.
For more information about volume shadowing, see Chapter 18 (summary
of phase II support) and the VMS Volume Shadowing Manual (detailed
information).
-
22.5.10 $SETUAI: New Item Codes for Enhanced Password Screening @)

With Version 5.4 of the VMS operating system, passwords selected by
users can be screened for acceptability. The VMS system automatically
compares new passwords against a system dictionary to ensure that a
password is not a native language word. It also maintains a history list of
a user’s passwords and compares each new password against this list to
guarantee that an old password is not reused.

In addition, a site with contractual obligations to use special algorithms
for encrypting passwords will be able to use them. Q

To support these enhancements, $SETUAI accepts the following item codes
and returns information about encryption algorithms for passwords:

UAI$_ENCRYPT

When you specify UAI$_ENCRYPT, $SETUALI sets one of the values shown
in the following table to identify the encryption algorithm for the primary

password.
Symbolic Name Description
UAI$SC_AD_It Uses a CRC algorithm and returns a Iongword hash
value. It was used in VMS releases prior to
Version 2.0.
UAI$C_PURDY Uses a Purdy algorithm over salted input. It expects
a blank-padded user name and returns a quadword
hash value. This algorithm was used during VMS \
Version 2.0 field test.

22-60

System Services
22.5 Modified System Services

Symbolic Name Description

UAI$C_PURDY_V Uses the Purdy algorithm over salted input. It
expects a variable length user name and returns a
quadword hash value. This algorithm was used in
VMS releases prior to Version 5.4.

UAI$C_PURDY_S Uses the Purdy algorithm over salted input. It
expects a variable length user name and returns a
guadword hash value. This is the current algorithm
that VMS uses for all new password changes.

UAI$SC_PREFERED _ Represents the latest encryption algorithm that

ALGORITHM' the VMS system uses to encrypt new passwords.
Currently, it equates to UAI$C_PURDY_S. Digital
recommends that you use this symbol in source
modules.

T The value of this symbol may be changed in future releases if an additional algorithm is
introduced.

Because the encryption algorithm is a byte in length, the buffer length
field in the item descriptor should specify 1 byte.

UAI$_ENCRYPT2

When you specify UAI$_ENCRYPTZ2, $SETUALI sets one of the following
values, indicating the encryption algorithm for the secondary password. .
Refer to the UAI$_ENCRYPT item code for a description of the algorithms.

— UAI$C_AD_II

— UAI$C_PURDY

— UAI$C_PURDY_V

— UAI$C_PURDY_S

— UAISC_PREFERED_ALGORITHM

Because the encryption algorithm is a byte in length, the buffer length
field in the item descriptor should specify 1 byte.

UAI$_FLAGS
This item code has two new symbolic names:

Symbolic Name Description

UAI$V_DISPWDDIC Automatic checking of user-selected passwords against
the system dictionary is disabled.

UAI$SV_DISPWDHIS Automatic checking of user-selected passwords against

previously used passwords is disabled.

UAI$_SALT

When you specify UAI$_SALT, $SETUALI sets the salt field of the user’s
record to the value you provide. The salt value is used in the VMS hash
algorithm to generate passwords. $SETUAI does not generate a new salt
value for you.

22-61

System Services

22.5 Modified System Services

Because this decimal number is a word in length, the buffer length field in
the item descriptor should specify 2 bytes.

By copying the item codes UAI$_SALT, UAI$_ENCRYPT, UAI$_PWD,
UAI$_PWD_DATE, and UAI$_FLAGS, a site-security administrator can
construct a utility that propagates password changes throughout the
network. Note, however, that Digital does not recommend using the same
password on more than one node in a network.

22.6 Implementing Site-Specific Security Policies

Occasionally, you may need to write routines that implement site-
specific policies or special algorithms. The routines that you write can
either replace or augment built-in VMS policies. This section contains
instructions for replacing key operating system security routines with
routines that are specific to your site. Two types of routines are discussed:
loadable system services and shareable images.

22.6.1 Creating Loadable Security Services

22-62

This section describes how to create a system service image and

how to update the file SYS$LOADABLE_IMAGES:VMS$SYSTEM_
IMAGES.DATA, which controls site-specific loading of system images.
These procedures update the loading of system images for all nodes of a
cluster.

Currently, you can replace three system services with services specific to
your site:

* $ERAPAT—Generates a security erase pattern
e $MTACCESS—Controls magnetic tape access
e $HASH_PASSWORD—Applies a hash algorithm to an ASCII password

When creating the system service, you code the source module and define
the vector offsets, the entry point, and the program sections for the system
service. At this point, you can assemble and link the module to create a
loadable image.

Once you have created the loadable image, you install it. First, you copy
the image into the SYS$LOADABLE_IMAGES directory and add an entry
for it in the VMS system images file using the SYSMAN Utility. Next, you
invoke the system images command procedure to generate a new system
image data file. Finally, you reboot the system to load in your service.

The following sections describe how to create and load the SERAPAT
system service. An example of the SERAPAT system service can be found
in SYS$EXAMPLES:DOD_ERAPAT.MAR on the VMS operating system.
What is described here also applies to the system services $HASH_
PASSWORD and $MTACCESS. An example of how to prepare and load
the $SHASH_PASSWORD service can be found in SYS$EXAMPLES:HASH
PASSWORD.MAR.

System Services
22.6 Implementing Site-Specific Security Policies

22.6.1.1 Preparing and Loading a System Service
Use the following procedure to prepare and load a system service, in this
case $ERAPAT:

1 Create the source module.
a. Include the following macro to define system service vector offsets:
$SYSVECTORDEF ; Define system service vector offsets

b. Use uwne following macro to define the system service entry point:

SYSTEM_SERVICE ERAPAT, - ; Entry point name
<R4>, - ; Register to save
MODE=KERNEL, - ; Mode of system service
NARG=3 ; Number of arguments

(The code immediately following this macro is the first instruction
of the $ERAPAT system service.)

¢. Use the following macros to declare the desired program sections
(PSECT):
DECLARE_PSECT EXECSPAGED CODE ; Pageable code PSCET
DECLARE_PSECT EXECSPAGED DATA ; Pageable data PSECT
DECLARE PSECT EXECSNONPAGED DATA ; Nonpageable data PSECT
DECLARE_PSECT EXECSNONPAGED CODE ; Nonpageable code PSCET

2 Assemble the source module by using the following command:
$ MACRO DOD ERAPAT+SYSSLIBRARY:LIB.MLB/LIB

3 Link the module to create a SYSSERAPAT.EXE executive loaded
image. You can link the module using the command procedure
DOD_ERAPAT_LNK.COM in SYS$EXAMPLES. (A command
procedure is also available to link the $HASH_PASSWORD example.)
To link the $ERAPAT module, enter the following command:

S QSYSSEXAMPLES:DOD ERAPAT LNK.COM

4 Prepare the operating system image to be loaded.

a. Copy the SYS$ERAPAT.EXE image produced by the link command
into the directory SYS$COMMON:[SYS$LDR]. Note that privilege
is required to put files into this directory.

b. Add an entry for the SYSSERAPAT.EXE image in the
SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX data file,

You add an entry by using the SYSMAN command SYS_
LOADABLE ADD. (See the VMS SYSMAN Utility Manual for

a description.) For example, the following commands add an entry
in VMS$SYSTEM_IMAGES.IDX for SYSSERAPAT.EXE:

$ RUN SYSS$SSYSTEM:SYSMAN

SYSMAN> SYS LOADABLE ADD LOCAL SYSSERAPAT -
_SYSMAN> /LOAD STEP = SYSINIT -

_SYSMAN> /SEVERITY = WARNING -

_SYSMAN> /MESSAGE = "failure to load SYS$ERAPAT.EXE"

22-63

System Services
22.6 Implementing Site-Specific Security Policies

This entry specifies that the SYS$ERAPAT.EXE image is to be
loaded by the SYSINIT process during the bootstrap. If there is an
error loading the image, the following messages are printed on the
console terminal:

%$SYSINIT-E-failure to load SYSSERAPAT.EXE
~SYSINIT-E-error loading <SYSSLDR>SYSSERAPAT.EXE, status = "status"

¢. Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM
command procedure to generate a new system image data file. The
system bootstrap uses this image data file to load the appropriate
images into the system.

d. Reboot the system, which loads the original SYS$ERAPAT.EXE
image into the system. Subsequent calls to the $ERAPAT system
service use the normal VMS routine.

As the default, the system bootstrap loads all images described
in the system image data file (VMS$SYSTEM_IMAGES.DATA).
You can disable this functionality by setting the special SYSGEN
parameter LOAD_SYS_IMAGES to 0.

22.6.1.2 Removing an Executive Loaded Image
Use the following procedure to remove an executive loaded image, in this
case, SYS$ERAPAT. EXE:

1

Enter the following SYSMAN command:
SYSMAN> SYS LOADABLE REMOVE LOCAL SYSSERAPAT

Invoke the SYS$UPDATE:VMS$SYSTEM_IMAGES.COM command
procedure to generate a new system image data file. The system
bootstrap uses this image data file to load the appropriate images into
the system.

Reboot the system, which loads the installation-specific
SYS$ERAPAT.EXE image into the system. Subsequent calls to the
$ERAPAT system service use the installation-specific routine.

As the default, the system bootstrap loads all images described in
the system image data file (VMS$SYSTEM_IMAGES.DATA). You can
disable this functionality by setting the special SYSGEN parameter
LOAD_SYS_IMAGES to 0.

22.6.2 Installing Site-Specific Password Policy Filters

A site security administrator can screen new passwords to make sure they
comply with a site-specific password policy. (See Chapter 14.) This section
describes how a security administrator would encode the policy, create a
shareable image and install it in SYS$LIBRARY, and enable the policy by
setting a SYSGEN parameter.

22-64

Installing and enabling a site-specific password policy image requires both
SYSPRV and CMKRNL privileges. In addition, if INSTALL and SYSPRV
file access auditing are enabled, multiple security alarms are generated
when the shareable image is installed and the change to the SYSGEN
parameter is noted on the operator console.

o

O

C

®

System Services
22.6 Implementing Site-Specific Security Policies

The shareable image contains two global routines, which are called by the
VMS Set Password Utility whenever a user changes a password.

Warning: The two global routines let a security administrator obtain both
the proposed plaintext password and its equivalent quadword
hash value. All security administrators should be aware of
this feature, as its subversion by a malicious privileged user
will compromise your system’s security. See the following
recommended procedures.

Digital recommends that you use the following commands to place security
alarm ACEs on the shareable image and its parent directory:

$ SET ACL/ACL= (ALARM=SECURITY,ACCESS=WRITE+CONTROL+DELETE+SUCCESS+FAILURE) -
_$ SYSSLIBRARY:VMSSPASSWORD POLICY.EXE

$ SET ACL/ACL=(ALARM=SECURITY,ACCESS=WRITE+CONTROL+SUCCESS+FAILURE) -

_$ SYS$SCOMMON: [000000]SYSLIB.DIR

You must also enable ACL alarms using the following command:

$ SET AUDIT/ALARM/ENABLE=ACL

Once in place, these alarms will catch all attempts to replace or to modify
the VMS$PASSWORD_POLICY image.

22.6.2.1 Creating a Shareable Image
To compile and link a shareable image that filters passwords for words
that are sensitive to your site, perform the following steps:

1

Create the source module VMS$PASSWORD_POLICY.*. BLISS
and Ada examples of the policy module’s interface, called
VMS$PASSWORD_POLICY.*, are located in SYS$EXAMPLES.

Define two routine names in the source module: POLICY_PLAINTEXT
and POLICY_HASH. These routines must be global; (see your
language reference for directions on defining a global routine). The
Set Password Utility looks for these routine names and displays the
message SYMNOTFOU if the names are missing or if the routines are
not defined as global.

Link the source file using the command procedure VMS$PASSWORD _
POLICY_LNK.COM, located in SYS$EXAMPLES.

22.6.2.2 Installing a Shareable Image
To install a shareable image, perform the following steps:

1

Copy the resulting file to SYS$LIBRARY and install it using the
following commands:

$ COPY VMS$SPASSWORD POLICY.EXE SYS$COMMON: [SYSLIB]/PROTECTION= (W:RE)
$ INSTALL ADD SYSSLIBRARY:VMS$PASSWORD POLICY/OPEN/HEAD/SHARE

2

Set the SYSGEN parameter LOAD_PWD_POLICY to 1.

$ RUN SYSS$SYSTEM:SYSGEN
SYSGEN> USE ACTIVE

SYSGEN> SET LOAD PWD POLICY 1
SYSGEN> WRITE ACTIVE

SYSGEN> WRITE CURRENT

22-65

System Services
22.6 Implementing Site-Specific Security Policies

3 To make the changes permanent, add the INSTALL command from
step 1 to the file SYS$SYSTEM:SYSTARTUP_V5.COM and modify the
system parameter file, MODPARAMS.DAT, so the parameter LOAD_
PWD_POLICY is set to 1.

4 Run AUTOGEN to ensure that the SYSGEN parameters are set
correctly on subsequent system startups.

$ @SYSSUPDATE : AUTOGEN SAVPARAMS SETPARAMS

22-66

(\/
e

23 Run-Time Library Routines

This chapter describes new features of the Run-Time Library (RTL)
Parallel Processing (PPL$) and Mathematics (MTHS$) facilities.

23.1 Parallel Processing (PPLS$)

The VMS Version 5.4 RTL Parallel Processing (PPL$) facility contains 19
new routines that complement the basic suite of functionality originally
provided for VMS Version 5.0. New features of the PPL$ facility include
the following:

¢ A routine, PPLSCREATE_APPLICATION, that informs the PPL$
facility that the caller is forming or joining a parallel application. This
routine replaces PPLSINITIALIZE, which is obsolete beginning with
Version 5.4 of the VMS operating system,

* Routines that implement work queues. Work queues allow one or
more processes to serve as dispatchers of work items to be performed
by other processes. Work queues also provide process synchronization.

Routines that implement work queue synchronization are as follows:

PPL$CREATE_WORK_QUEUE
PPL$DELETE_WORK_QUEUE
PPL$READ_WORK_QUEUE
PPL$DELETE_WORK_ITEM
PPLSINSERT_WORK_ITEM
PPLSREMOVE_WORK_ITEM

A new example program written in VAX C shows how to use the work
queue routines and PPL$CREATE_APPLICATION.

* Routines that delete a PPL$ application or object. These routines are
as follows:

PPL$DELETE_APPLICATION
PPL$DELETE_BARRIER
PPL$DELETE_EVENT
PPL$DELETE_SEMAPHORE
PPL$DELETE_SPIN_LOCK
PPL$DELETE_VM_ZONE

* Routines that set and adjust a semaphore maximum (analogous
to setting and adjusting a barrier quorum). These routines are as
follows:

PPL$ADJUST_SEMAPHORE_MAXIMUM
PPL$SET_SEMAPHORE_MAXIMUM

23-1

Run-Time Library Routines
23.1 Parallel Processing (PPLS$)

* Routines that disable event notification and reset an event state
(“untrigger” an event). These routines are as follows:

PPL$DISABLE_EVENT
PPL$RESET_EVENT

* Routines that read a spin lock state and find a synchronization
element or shared memory zone’s identifier, as follows:

PPL$READ_SPIN_LOCK
PPLSFIND_OBJECT_ID

PPL$FIND_OBJECT_ID replaces PPL$FIND_SYNCH_ELEMENT_ID,
which is beginning with Version 5.4 of the VMS operating system.

For a detailed description of the new PPL$ routines, refer to the VMS RTL
Parallel Processing (PPL$) Manual.

23.2 Mathematics (MTHS$)

23-2

The RTL MTHS facility provides the following new and modified sets of
routines to support vector processing:

¢ Basic Linear Algebra Subroutines (BLAS) Level 1
¢ First Order Linear Recurrence (FOLR)

* Routines that have been vectorized to support Digital vectorizing
compilers such as the VAX FORTRAN High Performance Option
(HPO)

See Section 2.3.1 for more information about using RTL MTH$ routines
in a vector processing environment. See VMS RTL Mathematics (MTHS$)
Manual for complete descriptions of all new, modified, and existing RTL
MTHS routines.

2
L

7

@

O

C

C

O

O

24 VMS Record Management Services

This chapter describes the following enhancements to VMS Record
Management Services for Version 5.4 of the VMS operating system:

* Asynchronous support for process-permanent files
* Increase in local buffer limit
* Access-mode protection

* Expired-date suppression

VMS RMS Asynchronous Support for Process-Permanent Files

Prior to Version 5.4 of the VMS operating system, VMS RMS ignored the
asynchronous option for process-permanent files. VMS RMS now supports
this option, which affects the performance options within the following two
RMS control blocks:

RMS Control Block Field Performance Option
File Access Block (FAB) FAB$L_FOP FAB$V_ASY
Record Access Block (RAB) RAB$L_ROP RAB$V_AST

Local Buffer Maximum Increased

With Version 5.4 of the VMS operating system, the maximum number of
local buffers is increased to 32,767. Prior to Version 5.4, you were limited
to specifying no more than 127 local buffers for a record stream from
the VMS RMS interface using the RAB multibuffer count field (RAB$B_
MBF). You obtain the additional local buffering capability by using the
multibuffer count XABITM. The multibuffer count XABITM is used as
an input to the Connect service only. It is not used as an output by any
service.

The maximum number of local buffers established by the DCL command
SET RMS_DEFAULT for a process has also increased from 127 to 255.
However, the maximum number of local buffers established by the DCL
command SET RMS_DEFAULT for the system remains 127.

The XAB$_MULTIBUFFER_COUNT XABITM requires a 4-byte buffer

to store the value that specifies the number of local buffers. To specify
the number of local buffers, set up the XAB$_MULTIBUFFER_COUNT
XABITM with the number of local buffers desired. Then, link the XABITM
into the XAB chain for the record stream prior to invoking the Connect
service. When you use the multibuffer count XABITM, the value specified
overrides any value that resides in the RAB$_MBF for the related record

24-1

VMS Record Management Services
24.2 Local Buffer Maximum Increased

stream. See Chapter 11 of the VMS Record Management Services Manual
for details about using an XABITM.

Before you increase the size of the local buffer pool, you should consider
current memory management parameters because excessively large buffer
pools introduce additional paging that can reduce I/O performance.

24.3 Access-Mode Protection for VMS RMS

VMS RMS now provides access-mode protection for its services and
associated memory. This feature is analogous to the protection provided by
the system services $ASSIGN and $SETPRT.

No code changes are required for RMS calls involving a single access mode.
A code change might be required for RMS calls that initiate operations
from an inner access mode and allow subsequent RMS operations from an
outer access mode.

If an inner-mode caller initiates an RMS operation without overriding the
access mode, subsequent outer-mode calls fail with an RMS$_PRV error.
The arguments in the following code example are used to override the
caller’s access mode. These arguments, together with related topics, are
described in the section on access modes in Introduction to VMS System
Services.

FABSV_CHAN MODE = PSLS$C_<USER, SUPER,EXEC,KERNEL> ! Select one

VMS uses the maximized value of the caller’s access-mode and the FAB$V_
CHAN_MODE argument (RMS access-mode argument) to establish the
access mode.

24.3.1 Access-Mode Protected Services

24-2

The following services initiate operations on files. These services establish
the access mode that VMS RMS uses to validate the access modes of
subsequent accessing services.

$CREATE $OPEN $PARSE $SEARCH

The following services access open files to perform various VMS RMS
operations. The access modes for each service trying to access an open file
must be validated before RMS operations are allowed.

$CLOSE $CONNECT $DELETE $DISCONNECT
$DISPLAY $EXTEND $FIND $FREE
$FLUSH $GET $NXTVOL $PUT

$READ $RELEASE $REWIND $SPACE
$TRUNCATE $UPDATE SWAIT SWRITE

VMS RMS does not validate the access mode for the following services
because access-mode comparison is not relevant to them.

$ENTER $ERASE $REMOVE $RENAME

»

C

VMS Record Management Services
24.3 Access-Mode Protection for VMS RMS

24.3.2 Access-Mode Protected Memory

VMS RMS now protects the following data structures and their associated
I/O buffers at EW (executive read/write). Previously, the data structures
were protected at UREW (user read, executive write).

e RMS-controlled data structures
® Process-permanent data structures

¢ Image-activated data structures

The following memory protection exceptions apply to user-mode accessors
of RMS and are protected at UREW:

¢ Internal RMS I/O buffers—to facilitate RAB$V_LOC mode
- ¢ RMS buffers containing collated tables used for indexed files

24.4 Expired-Date Suppression

The file system, in conjunction with parameters established using the DCL
interface (see the Set Volume command in VMS DCL Dictionary), gives
users a facility for determining whether a data file has expired and is
eligible to be transferred to another storage medium. Expiration of a file is

O determined by the Expiration Date and Time, which should not be updated
for maintenance functions or for any function where the data is not really
being modified.

Prior to VMS Version 5.4, the ability to suppress the expiration update

was available only to applications that interface directly with the file

system through the $QIO system service. (See ACP Functions in VMS I/0

User’s Reference Manual: Part I.) Now the ability to selectively suppress

the update of the Expiration Date and Time is available to all applications
C through the RMS interface.

24.4.1 The Role of XAB$_NORECORD XABITM

The XAB$_NORECORD XABITM suppresses the update of the Expiration
Date and Time on the $CLOSE service. The Expiration Date and Time

is used by VMS to determine if the data in a disk file has been accessed
recently. Normally, when data has been read or written to a disk file, the
$CLOSE service updates the Expiration Date and Time to the current date
and time. This moves back the date and time when the file is considered
expired. Specifying the XAB$_NORECORD XABITM suppresses the
update of the Expiration Date and Time.

The XAB$_NORECORD XABITM uses a 4-byte buffer to set the
NORECORD flag to logic 1 using the symbol XAB$_ENABLE. Any other
value in this XABITM buffer returns an RMS$_XAB error. An application
cannot disable this option because the ODS-II ACP does not support
C:) disabling this function once it has been selected on a $OPEN or $CREATE.

24-3

VMS Record Management Services
24.4 Expired-Date Suppression

24.4.2 Applications for XAB$ NORECORD XABITM

Typically, the XAB$_NORECORD XABITM is used by directory or
maintenance routines that do not manipulate the data and, therefore,
does not change the expiration status of a disk file. For example, the DCL
command DIRECTORY/FULL uses the XAB$_NORECORD XABITM as it
opens files to access prolog data containing key information. In this case,
DIRECTORY displays prolog information but does not display or modify
user data in the disk file and should not modify the Expiration Date and
Time. Maintenance utilities should consider using this XABITM. For
example, a disk defragmentation utility should not modify the expiration
status of a disk file.

Digital recommends using the XAB$_NORECORD XABITM on the $OPEN —
service instead of on the $CLOSE service—because the suppression of the ()
Expiration Date and Time update is guaranteed should the file deaccess or ~

should a close occur because of process deletion or RMS rundown.

XAB$_NORECORD can be enabled on input to the $CLOSE, $OPEN

and $CREATE services. If the $CREATE service opens an existing file

through the Create-if option and the Expiration Date and Time are not to

be modified, the XAB$_NORECORD XABITM can be specified. When the
XAB$_NORECORD XABITM is used on a $CREATE that creates a file,

it disables the update on the subsequent $CLOSE but does not prevent -
initialization of the Expiration Date and Time on the file creation in the Q
ACP. S

The XAB$_NORECORD XABITM can be sensed on output from RMS for
the $OPEN, $CREATE, $DISPLAY, and $CLOSE services. An application
typically senses the XAB$_NORECORD XABITM to determine if the
XABITM was specified on a previous $OPEN or $CREATE option or if it is
specified by the current RMS operation.

SN
/

24-4

2 5 I/0 Driver Support

This chapter describes new VMS Version 5.4 I/O driver support in the
following areas:

¢ Pseudoterminal driver

¢ Shadow Set Virtual Unit Driver (SHDRIVER)
¢ TRM$_MODIFIERS item code

e Jtemlist read function I/O status block

e ACP-QIO function attributes

See the revised VMS 1/0 User’s Reference Manual: Part I for complete
information.

25.1 Pseudoterminal Driver

The Pseudoterminal Driver (FTDRIVER) is now part of the VMS operating
system. This driver, along with several control connection (PTD$) routines,
enables you to create, use, and manipulate pseudoterminals with the VMS
operating system. The VMS I/O User’s Reference Manual: Part I describes
pseudoterminal driver functions and capabilities, and lists the VAX calling
standards for the control connection routines.

25.2 Shadow Set Virtual Unit Driver

The Shadow Set Virtual Unit Driver (SHDRIVER) is now part of the VMS
operating system. This driver supports VMS Volume Shadowing

phase II, which provides the same capabilities as VAX Volume Shadowing
phase I but includes support for all DSA disks. The VMS I/0 User’s
Reference Manual: Part I describes shadow set virtual unit driver
functions and capabilities.

25.3 New Modifier Bits for TRM$_MODIFIERS ltem Code

Six new modifier bits have been added for the TRM$ MODIFIERS item
code for itemlist terminal driver read verify operations:

* TRM$M_TM_ARROWS—The terminal interprets the left and right
arrow keys.

e TRM$M_TM_NOCLEAR—Fill characters are not replaced with clear
characters after a non-fill character occurs.

¢ TRM$M_TM_OTHERWAY—Enables left-justify insert mode and right-
justify overstrike mode.

e TRM$M_TM_TERM_ARROW-—The read operation is terminated when
a left or right arrow key is entered at the corresponding margin.

25-1

25.4

25.5

/O Driver Support
25.3 New Modifier Bits for TRM$_MODIFIERS Item Code

¢ TRM$M_TM_TERM_DEL~—The read operation is terminated when a
DELETE key is entered at the left margin.

e TRM$M_TM_TOGGLE—Enables Ctlr/A to function as a toggle key
between insert mode and overstrike mode.

Table 8-8 in the VMS I/0O User’s Reference Manual: Part I describes the
TRM$_MODIFIERS item code and its associated modifier bits.

ltemlist Read Function I/O Status Block

In the I/O status block (IOSB) for the itemlist read function, the byte at
I0SB+5, which formerly returned -1, now returns status information.
Table 8-15 in the VMS I/0 User’s Reference Manual: Part I lists this
status information.

New ACP-QIO Function Attributes

25-2

There are three new attributes for ACP-QIO functions:
* ATR$C_DELETE_ALL—Deletes the entire access control list (ACL)

¢ ATR$C_GRANT_ACE—Returns an access control list entry (ACE) that
grants or denies access

¢ ATR$C_NEXT_ACE—Points to the next ACE in the ACL

Table 1-7 in the VMS I/0 User’s Reference Manual: Part I describes
ACP-QIO function attributes.

Y
A

26

26.1

System Dump Analyzer Utility (SDA)

This chapter describes two new qualifiers to the SHOW PROCESS
command now available with Version 5.4 of the VMS System Dump
Analyzer Utility (SDA).

New SHOW PROCESS Qualifier: /IMAGES

The /IMAGES qualifier to the SDA command SHOW PROCESS displays
the address of the Image Control Block, the starting and end addresses

of the image, the activation code, the protected and shareable flags, the

image name, and the major and minor ID of the image.

The following is an example of output displayed by the SHOW PROCESS
/IMAGES command:

Process activated images

ICB Start End Type Image Name Major ID,Minor ID
7FF83878 00000200 O0O00OODFF MAIN SHOW _PROC IMAGES 0,0
TFF84100 O0003AC00 OOO3FBFF GLOBAL PRT SHR DECWSTRANSPORT COMMON 12,12
7FF84400 00036200 OOO3ABRFF GLOBAL CONVSHR 1,0

7FF84470 0002E400 000361FF GLOBAL FDLSHR 1,0

7FF84560 00021A00 O00O02E3FF GLOBAL SORTSHR 2,28

7FF845D0 O00O00EOO0 0O0008SFF GLOBAL LIBRTL2 1,12

TFF835F8 (00008A00 000219FF GLOBAL SHR LIBRTL 1,14

7FF84800 00060C00 000767FF MERGED SHR ADARTL 0,0

7FF84720 00076800 O0O0OAOQO3FF GLOBAL SHR MTHRTL 129,32781

Total images = 9 Pages allocated = 1017
The following are possible values for the activation code:
» MAIN—Image is the object of a RUN command
¢ MERGED—Image is an additional mapped image
* GLOBAL—Image is a global image section

The protected flag (PRT) indicates that the image is installed protected.
The shareable flag (SHR) indicates that the image is installed shareable.

For more information on the SDA command SHOW PROCESS, see the
VMS System Dump Analyzer Utility Manual.

26-1

System Dump Analyzer Utility (SDA)
26.2 New SHOW PROCESS Qualifier: /VECTOR_REGISTERS

26.2 New SHOW PROCESS Qualifier: /VECTOR_REGISTERS

26-2

The System Dump Analyzer lets you examine vector instructions and
vector context from a system dump file or in a running system. One

way to accomplish this is by specifying the new /VECTOR_REGISTERS
qualifier to the SHOW PROCESS command, which obtains the values of
the registers from the process’s vector context area. See Section 2.3.5.2 for
a complete description of SDA support for vector processing.

C

27 Device Support

O 27.1

C

27.2

C

The VMS Version 5.4 operating system provides device support for writing
and debugging driver software for VAX 9000 and VAX 6000 systems. This
chapter describes this support for programmers who write and debug
driver software for non-Digital-supplied devices attached to a

VAX 9000 system. For more detailed information about device support
driver programming, see the revised VMS Device Support Manual.

VAX 9000 Hardware Considerations

The VAX 9000 bus architecture illustrated in Figure 27-1 features
multiple XMI buses for large systems. A system control unit (SCU)

and I/O control unit translate each address and connect a VAX 9000
CPU or memory bus to a target XMI and device or bus adapter. The
SCU and I/O control unit connect to each XMI through an XJA adapter.
Then, various bus adapters on the XMI provide connection to VAXBI,
Ethernet, and Computer Interconnect (CI) buses, which are the second
level of the bus architecture. A KDM70 adapter on the XMI bus provides
a direct connection to disk or tape devices. Device support is provided for
non-Digital-supplied devices connected to second level I/O buses and below.
Generic XMI support is not provided.

VAX 9000 System Address Space

A VAX 9000 system supports 30-bit addressing on each XMI bus and
provides 1 gigabyte of physical address space. The total address space is
divided in equal halves by memory and I/O address space, as shown in
Figure 27-2.

All memory locations on a VAX 9000 XMI bus are addressed using physical
addresses in XMI memory space (from 0000 00004 through

1FFF FFFF{6). An XMI device that accesses memory directly (or indirectly
through a system-interconnect adapter) or its driver must perform virtual-
to-physical translation before transmitting a memory address on the

bus.

VAX 9000 XMI I/O address space (physical addresses 2000 0000+¢
through 3FFF FFFFg) is partitioned as illustrated in Figure 27-3.
Macro $I09AQDEF contained in SYS$LIBRARY:LIB.MLB defines symbols
describing the layout of I/O address space.

271

Device Support

27.2 VAX 9000 System Address Space

VAX 9000 System Architecture

Figure 27-1

Memory

CPU

CPU

CPU

CPU

gUUUUY

VAX 9000

System Control Unit

Console

Ethernet

Cl

)

I/O Control Unit

)

38 2 2
a
" < m m /A\ N
= o \3a a _Z -5
S| |2 =5 | | o
X [} (=) o
xX=Z—0
e e e e e e e e e - e = k= - - — AN
XS —
(—|| II
II BAN
XZ—A
ll ="/
II BN
XS—m

ZK-1599A-GE

27-2

O

Device Support
27.2 VAX 9000 System Address Space

Figure 27-2 VAX 9000 XMiI Address Space

Hex Address
0000 0000
Memory Space
512Mb
2000 0000
I/O Space
512Mb
3FFF FFFF
ZK-5541-GE

The assignment of I/O addresses, shown in Figure 27-3, for any VAX 9000
system supports two levels of bus structure: the XMI and the VAXBI. A
VAX 9000 system uses the XMI as the primary I/O bus and can have up
to 4 XMIs, depending on the model. Each XMI can have up to 12 nodes or
devices numbered 1 through D hexadecimal. Note that the XJA adapter
occupies node 0 on an XMI.

Each XMI-to-VAXBI adapter (DWMBA/A) provides connection to the
second level I/0 subsystem. At the second level, device support is provided
for non-Digital-supplied devices connected to the VAXBI bus. See the VMS

Device Support Manual for more specific information about these generic
VAXBI devices.

Each XBI (14 maximum) is physically mapped into its own XBI window
space (XBIx) in the I/O block. The four XMI buses are assigned the first
region of the I/O block, XMIO through XMI3, that spans the node space
region. The window spaces for each VAXBI are next, contiguously assigned
XBIO through XBID;g, spanning the XBI window space region. This allows
CPUs to address the individual XMI device CSRs as well as the individual
BI device CSRs.

In XMI I/O space, a given XBI's window space is determined by the XBI’s
XMI node number. There is a limit of 8 XBIs on a given XMI bus and a
limit of 14 XBIs across all XMI buses. In the assignment of XBI window
spaces, the XBI with the lowest node number on XMIO0 is assigned to XBIO
window space. The XBI with the second lowest node number in XMIO0 is
assigned to XBI1 window space, and so on through all XBls on XMIO, then
to XMI1, XMI2, and until XMI3 is exhausted or the 14th XBI is found.

A 40-bit bus (bits 39 to 0) in the SCU is transparent to devices and nodes
on the XMI and VAXBI buses. As shown in Figure 27-4, I/0 space on the
40-bit bus starts at address 80 0000 000015 and is entered when bit 39
is set to a 1. Beginning at 80 0180 0000 is the array of 16 x 512Kb XMI

27-3

Device Support

27.2 VAX 9000 System Address Space

274

Figure 27-3 SCU/XMI Systems I/O Address Space

XMIO Node Space

XMI1 Node Space

XMI2 Node Space

XMI3 Node Space

XBIO Window Space

XBI1 Window Space

XBI2 Window Space

XBI3 Window Space

XBl4 Window Space

XBI5 Window Space

XBI6 Window Space

XBI7 Window Space

XBI8 Window Space

XBI9 Window Space

XBIA Window Space

XBIB Window Space

XBIC Window Space

XBID Window Space

XJAQ Private Space

XJA1 Private Space

XJA2 Private Space

XJAS3 Private Space

SCU Register Space

Hex Address
2000 0000

2080 0000
2100 0000
2180 0000
2200 0000
2400 0000
2600 0000
2800 0000
2A00 0000
2C00 0000
2E00 0000
3000 0000
3200 0000
3400 0000
3600 0000
3800 0000
3A00 0000
3C00 0000
3E00 0000
3E08 0000
3E10 0000
3E18 0000
3E20 0000
3FFF FFFF
ZK-1938A-GE

node space allocations. This provides a 512Kb node space for each possible
XMI node. The System Control Unit, I/O control unit, and XJA adapter of
the SCU use this map to translate and select one of the eight XBI window
spaces from an address presented by a CPU.

An XJA of the SCU/XMI bus architecture is an adapter that connects the
SCU ports to the XMI bus. The XJAs have a private space region in the
I/O block that allows CPUs to address the XJA CSRs. Since there are up
to four XMIs, there can be four XJAs. In the XJA private space region,
XJAs are mapped XJAO through XJA3.

C

Device Support
27.2 VAX 9000 System Address Space

Figure 27-4 SCU Bus Address Allocation

XMI Private Space 80 0000 0000
80 0180 0000
XMI Node Space
XB11 Window Space 80 0200 0000
XB12 Window Space 80 0400 0000
XB13 Window Space 80 0600 0000
XB14 Window Space 80 0800 0000
80 0A0O 0000
Reserved

XB15 Window Space 80 1600 0000
: 80 1800 0000

XB16 Window Space
XB17 Window Space 80 1A0C 0000
XB18 Window Space 80 1C00 0000

80 1E0CO 0000

ZK-2004A-GE

Figure 27-5 describes the contents of each XJA private space. CSRs XBI
ID A and XBI ID B of this region are used by the XJA in translating a XBI
window-space address into its appropriate XMI XBI window-space address.

The last region is the SCU register space that allows CPUs to address the
CSRs of the System Control Unit and Console.

Figure 27-6 shows the bit structure and occurrences of a 30-bit I/O-space
address. The address bits are numbered 0 through 29, right-to-left. Bits O
through 22 translate the same for all buses. The occurrence of a 1 in bit 29
indicates an I/0 bound address. With bit 29 set, bits 25 through 28 specify
an XBI Window space address. When bit 29 is set and bits 25 through 28
are 0, an XBI Window address is indicated, or if bits 25 through 29 are 1,
a SCU bound address is present.

27-5

Device Support
27.2 VAX 9000 System Address Space

Figure 27-5 XJA Private Space Address Allocation

31

XJA Error Summary

XJA Force Command

XJA IPINTR Source

XJA Diagnostic Control

XJA DMA Failing Address

XJA DMA Failing Command

XJA Error Interrupt Cntrl

XJA Configuration

XBIIDA

XBI'IDB

XJA Error SCB Offset

Reserved

XJA SCB Offset IPL 14

XJA SCB Offset IPL 15

XJA SCB Offset IPL 16

XJA SCB Offset IPL 17

bb + 00
bb + 04
bb + 08
bb + 0C
bb +10
bb + 14
bb + 18
bb+1C
bb + 20
bb + 24
bb + 28
bb +2C
bb + 40
bb + 44
bb + 48
bb + 4C
bb + 50

bb = 3E00 0000 +
(XJA# « 80000)

ZK-2003A-GE

27-6

Device Support
27.2 VAX 9000 System Address Space

Figure 27-6 SCU/XMI Systems Address Bit Structure

29
1 /O Space

28 25
1 Specifies the bus or XB! Window Space

28 25 23
110000 Specifies XMI Node Space

28 25 23
1 1111 SCU Space

22 0

Specific Address

(same on all buses)
ZK-2002A-GE

27.3 Driver Debugging with Pool Checking

The Pool Check mechanism provided with VMS has been enhanced to
facilitate the debugging of a device driver in the context of driver memory
allocation and deallocation techniques. A new bit (bit 5) in the flags byte
of the POOLCHECK system parameter has been added which, when set,
validates the look-aside list deallocation operation (when freeing an SRP,
IRP, or LRP). For more information, see the VMS Device Support Manual.

The Poolcheck bugcheck has also been enhanced to distinguish between
several types of crashes, in addition to a corrupted packet condition. When
a crash occurs, the top-of-stack longword now contains a cause value, as
described further in VMS Device Support Manual.

27-7

(L

28 VAX Text Processing Utility (VAXTPU)

This chapter describes VAXTPU Version 2.6 new features and
enhancements included in Version 5.4 of the VMS operating system.
See the revised VAX Text Processing Utility Manual for more detailed
information.

28.1 New Qualifier: INTERFACE

The /INTERFACE qualifier, which you use to specify either character-cell
or DECwindows interface, has been added for compatibility with other
DECwindows applications. It is virtually the same as the /DISPLAY
qualifier.

28.2 New and Enhanced Built-In Procedures

The following built-in procedures are new or enhanced for the Version 5.4
VMS operating system:

GET_INFO

New GET_INFO built-in procedures enable you to determine the
following:

— Widget input focus

— Keystroke journal recovery

— Work file name

— Key name

— Cursor position after vertical motion operations
— Scroll setting

— Automatic pop-up menu positioning

MARK

An enhancement to the MARK built-in procedure lets you create
markers at arbitrary positions within a buffer. Previously, markers
could be created only at the current editing point.

SET (KEYSTROKE_RECOVERY)

This new built-in procedure turns keystroke journal recovery on or off,
regardless of whether such recovery was specified when the VAXTPU
session was started.

SET (MENU_POSITION)

This new built-in procedure lets you set automatic pop-up menu
positioning for one or more pop-up widgets.

28-1

VAX Text Processing Utility (VAXTPU)
28.2 New and Enhanced Built-ln Procedures

¢ SET (MOVE_VERTICAL_CONTEXT)

This new built-in procedure allows an application to restore the column
context value for a buffer.

* SET (SCROLLING)

An enhancement to the SET (SCROLLING) built-in procedure enables
you to specify jump scrolling or smooth scrolling.

28.3 Work File Support

You can significantly increase the size of the files you edit with VAXTPU
by creating work files. Work files make it possible for VAXTPU to handle
files that are larger than the available virtual memory space.

28-2

6

29 VAX RMS Journaling: Support for DECdtm Services

This chapter describes VAX RMS Journaling enhancements that support
DECdtm services for Version 5.4 of the VMS operating system. (See
Chapter 3 for a complete description of DECdtm services.) VAX RMS
Journaling continues to support existing applications developed on
previous versions of VAX RMS Journaling.

C\ 29.1 Support for DECdtm Transactions

The DECdtm transaction has superseded the Recovery Unit Facility
(RUF) recovery unit. In VAX RMS Journaling Version 5.4, an RMS
recovery unit is the recoverable work performed by a single process within
a DECdtm transaction.

The RUF recovery unit services have been superseded by corresponding
DECdtm transaction services, as follows:

O RUF Recovery Unit Service DECdtm Transaction Service
$START_RU $START_TRANS(W)
$END_RU $END_TRANS(W)
$ABORT_RU $ABORT_TRANS(W)

In addition, a single DECdtm transaction service, $END_TRANS(W), has
replaced two other RUF services, SPREPARE_RU and $COMMIT_RU,
which together were equivalent to the $END_RU service.

N For more information about the DECdtm transaction services, see
/ Chapter 22.

29.2 RUF Services Emulated

Recovery Unit Facility (RUF) services are still supported. They are
emulated transparently using DECdtm transaction services.

You do not have to recompile or relink your